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Abstract

The proliferation of large electronic document archives requires new techniques for

automatically analysing large collections, which has posed several new and inter-

esting research challenges. Topic modelling, as a promising statistical technique,

has gained significant momentum in recent years in information retrieval, senti-

ment analysis, images processing, etc. Besides existing topic models, the field of

topic modelling still needs to be further explored using more powerful tools. One

potentially useful area is to directly consider the document structure ranging

from semantically high-level segments (e.g., chapters, sections, or paragraphs) to

low-level segments (e.g., sentences or words) in topic modelling.

This thesis introduces a family of structured topic models for statistically mod-

elling text documents together with their intrinsic document structures. These

models take advantage of non-parametric Bayesian techniques (e.g., the two-

parameter Poisson-Dirichlet process (PDP)) and Markov chain Monte Carlo meth-

ods. Two preliminary contributions of this thesis are

1. The Compound Poisson-Dirichlet process (CPDP): it is an extension of the

PDP that can be applied to multiple input distributions.

2. Two Gibbs sampling algorithms for the PDP in a finite state space: these

two samplers are based on the Chinese restaurant process that provides

an elegant analogy of incremental sampling for the PDP. The first, a two-

stage Gibbs sampler, arises from a table multiplicity representation for the

PDP. The second is built on top of a table indicator representation. In a sim-

ply controlled environment of multinomial sampling, the two new samplers

have fast convergence speed.

These support the major contribution of this thesis, which is a set of structured

topic models:

Segmented Topic Model (STM) which models a simple document structure

with a four-level hierarchy by mapping the document layout to a hierarchi-
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cal subject structure. It performs significantly better than latent Dirichlet

allocation and other segmented models at predicting unseen words.

Sequential Latent Dirichlet Allocation (SeqLDA) which is motivated by

topical correlations among adjacent segments (i.e., the sequential docu-

ment structure). This new model uses the PDP and a simple first-order

Markov chain to link a set of LDAs together. It provides a novel approach

for exploring the topic evolution within each individual document.

Adaptive Topic Model (AdaTM) which embeds the CPDP in a simple di-

rected acyclic graph to jointly model both hierarchical and sequential doc-

ument structures. This new model demonstrates in terms of per-word pre-

dictive accuracy and topic distribution profile analysis that it is beneficial

to consider both forms of structure in topic modelling.
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Chapter 1

Introduction

In recent years, with the fast development of the web and the advent of vari-

ous digitisation techniques (e.g., optical character recognition and speech recog-

nition), documents continue to be stored on the Internet in the form of web-

pages, blogs, twitters, news papers, e-books, scientific articles, etc. The prolifer-

ation of large electronic document archives requires new techniques for automat-

ically organising, searching, indexing, and browsing large collections, which has

posed several new and interesting challenges to researchers in both the machine

learning and the data mining communities. In particular, there is an increasing

need of automatic methods to semantically visualise and analyse these electronic

documents. This thesis presents new probabilistic generative methods based on

non-parametric Bayesian techniques (e.g., the Dirichlet processes and the two-

parameter Poisson-Dirichlet processes) for effectively modelling text documents

by considering their intrinsic document structure.

Documents not only contain meaningful text, but also exhibit a natural struc-

ture, which is part of the motivation of the development of SGML, the precursor

to HTML. For example, a book has chapters which themselves contain sections;

a section is further composed of paragraphs; a blog or a twitter page contains

a sequence of comments and links to related blogs/twitters; a scientific article

contains appendices and references to related work. Clearly, a complete repre-

sentation of a document structure ranges from the high-level components (e.g.,

chapters or sections) to the low-level components (e.g., sentences or words). These

components (referred to as segments thereafter) provide rich contextual informa-

tion for their subcomponents. The layout of the components is always represented

in various forms jointly with the document logical structure, i.e., the latent sub-

ject structure. Altogether, the segments form a document structure, which will be

1
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Each 

paragraph 

should have 

a main 

point

topic 

sentence

link link link

Topic sentences carry the theme/outline/argument

BodyIntroduction

General
More 

specific

Conclusion

Sum up your argument/

information with reference 

to the essay question

v Introduce the topic

v Provide background information

v Limit the scop of discussion

v …...

topic 

sentence

topic 

sentence

topic 

sentence

Figure 1.1: An example document structure: an essay structure.

considered in this thesis. It can be very beneficial to directly consider the docu-

ment structure in statistical document modelling. The structural information can

be useful for indexing and retrieving the information contained in the document,

for instance, for structured information retrieval and digital libraries.

A well organised document structure can convey two kinds of information.

First, the layout of segments (e.g., the chapter sequence in a story book or the

paragraph sequence in an essay) in a document gives many clues about the sub-

ject structure of the document, which implies some semantic relationships among

those segments. These clues can also help readers to navigate documents ac-

cording to the subject structures. Second, the text content itself can give rich

information about the relationships and semantics of text. Analysing the text

content and exploring the document structure can provide us information about,

for example, how subjects are organised in a document and how they change over

the structure. Consequently, modelling documents along with their structures is

an interesting and potentially important problem in exploratory and predictive

text analytics.

To further explain the document structure, I take as an example an essay

structure shown in Figure 1.1. An easily accessible and understandable structure

is very important for an essay. Generally, an essay should have a subject which

indicates what the essay talks about; then paragraphs, basic structural units in

an essay, are organised around the subject. Furthermore, each paragraph should

have one or more subtopics, that are somehow linked together to make up the
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essay subject. It means the subtopics are not isolated, but they can be more

specific than the essay subject, and generally be variants of it. The layout and

progression of them can give us a meaningful essay structure. Indeed, the above

consideration originates from how people normally organise ideas in their writing.

As a consequence, a different challenge in automatic text analysis is the prob-

lem of understanding the document structure. The focus of this thesis is to sta-

tistically model the text content of documents together with their underlying

document structures by taking advantage of both topic modelling (Chapter 4)

and non-parametric Bayesian methods (Chapters 2 and 3). In recent years, topic

models and non-parametric Bayesian methods become increasingly prominent in

machine learning. The former forms a family of models in which documents can

be generated with simple probabilistic generative processes. The latter provides

a valuable suit of flexible modelling techniques, in which the prior and posterior

distributions are general stochastic processes whose support is the space of all

distributions.

1.1 Thesis Contribution

The objective of this thesis is to address research challenges for structured text

analysis in the context of hierarchical non-parametric Bayesian modelling. This

leads to the development of a family of structured topic models. Most existing

topic models directly model documents by tokens with the “bag-of-words” as-

sumption. They usually neglect the document structure. However, incorporating

the document structure in topic modelling, we can derive a richer posterior topical

structure that can further facilitate understanding and exploring each individual

document.

As discussed in the previous section, a document is usually composed of a

certain number of segments. The definition of segments can vary according to

different types of documents. They can be chapters in a book, sections in a

scientific article, and paragraphs in an essay. Although segments can be defined

differently, they are organised logically to form an entire document. The logical

organisation is achieved through linkages between the document subject and the

segment subtopics. In this thesis, the first set of contributions are models and

algorithms I present for modelling the following document structures:

Hierarchical document structure In writing, people usually try to organise

segments around the document subject according to subtopics discussed in
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the segments. The segment subtopics can be more specific than the subject,

which means each segment could have its specificity on topics. In general,

they can be taken as variants of the document subject. The organisation of

segments in a document according to relations between the document sub-

ject and the segment subtopics gives us an hierarchical representation of

the document structure. One contribution of this thesis is a new Segmented

Topic Model (STM, Chapter 5), which directly models the hierarchical doc-

ument structure by mapping it to a subject hierarchy that is specific for each

individual document. Modelling the hierarchical structure, STM has higher

fidelity over existing techniques in terms of per-word predictive accuracy.

Sequential document structure The segment sequence in a document, or the

layout of segments, also conveys a sequential document structure. The

subtopics of segments are not only linked to the document subject, but also

linked sequentially to their adjacent ones, because people often try to make

the flow of information among segments logical and smooth. Therefore,

segments are not actually exchangeable in a sequential context. Another

contribution of this thesis is a Sequential Latent Dirichlet Allocation model

(SeqLDA, Chapter 6), a novel variant of Latent Dirichlet Allocation (LDA)

[Blei et al., 2003], which makes use of a simple first-order Markov chain to

model the sequential structure exhibited by each document. It can effec-

tively discover and visualise patterns of topic evolution in each individual

document.

Mixture of hierarchical and sequential document structures It is known

that a document can simultaneously exhibit both a hierarchical structure

and a sequential structure. The mixture of the two structures gives us a

full document structure. Now, topic shifts from one part of the document

to another can be allowed, like those in a novel. The contribution on topic

modelling is therefore the integration of STM and SeqLDA. I call it an

Adaptive Topic Model (AdaTM, Chapter 7), in which a simple Directed

Acyclic Graph (DAG) is used to model both the hierarchical and the sequen-

tial document structures. It can further explore how each segment adapts

topics from either the preceding segment subtopic or the document subject,

or even both.

Moreover, to handle the above document structures, I use a non-parametric

Bayesian method, called the two-parameter Poisson-Dirichlet process (PDP),
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to model probabilistic dependencies between document subject and its segment

subtopics, and those among subtopics. With respect to the PDP, the second set

of contributions (Chapter 3) of this thesis includes

A Collapsed Multiplicity Gibbs Sampler (CMGS) The Chinese restaurant

process provides an elegant analogy of incremental sampling for the PDP. In

a Chinese restaurant metaphor for the PDP, customers arrive sequentially,

each of which chooses a dish by choosing a table. In Gibbs sampling dy-

namically recording the number of customers sitting at each table could be

problematic. I introduce a two-stage Gibbs sampling algorithm based on

the table multiplicity representation for the PDP [Teh, 2006a; Buntine and

Hutter, 2010]. It has been successfully used in STM and SeqLDA.

A Blocked Table Indicator Gibbs Sampler (BTIGS) This is joint work1

with Changyou Chen and Wray Buntine [Chen et al., 2011]. In the Chinese

restaurant metaphor, if a customer does not choose to sit at an occupied

table to share a dish with other customers, a new table will be created

for this customer. Thus, in the new sampling algorithm, we introduce an

auxiliary latent variable, called table indicator, to record those customers

who have chosen an unoccupied table. I have adapted it for doing posterior

inference over a DAG, see AdaTM (Chapter 7).

Notice that algorithms used for doing posterior inference for STM, SeqLDA

and AdaTM are good enough to test those models based on experimental results

in Chapter 3. It will be worth exploring the above algorithms along with other

techniques (e.g., variational inference [Jordan et al., 1999; Blei and Jordan, 2005])

to find more efficient methods.

The researches of this thesis have led to a set of published results as follows:

1. Lan Du, Wray Buntine, and Huidong Jin. A segmented topic model based

on the two-parameter Poisson-Dirichlet process. Machine Learning 2010.

[Du et al., 2010b]

2. Lan Du, Wray Buntine, and Huidong Jin. Sequential latent Dirichlet al-

location: Discover underlying topic structures within a document. In Pro-

ceedings of the 2010 IEEE International Conference on Data Mining, 2010

[Du et al., 2010a];

1Each author has equal contribution to this work [Chen et al., 2011].
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3. Lan Du, Wray Buntine, Huidong Jin, and Changyou Chen. Sequential latent

Dirichlet allocation. Knowledge and Information Systems, 2012 [Du et al.,

2012b];

4. Lan Du, Wray Buntine, Huidong Jin. Modelling Sequential Text with an

Adaptive Topic Model. Proceedings of the 2012 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural

Language Learning, 2012 [Du et al., 2012a];

5. Wray Buntine, Lan Du, and Petteri Nurmi. Bayesian networks on Dirich-

let distributed vectors. In Proceedings of the Fifth European Workshop on

Probabilistic Graphical Models (PGM-2010), 2010 [Buntine et al., 2010];

6. Changyou Chen, Lan Du, and Wray Buntine. Sampling for the Poisson-

Dirichlet process. In European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery in Database, 2011 [Chen et al.,

2011].

1.2 Thesis Overview

Figure 1.2 illustrates the dependencies of sections in Chapters 2 to 3 and the

subsequent chapters. The rest of the thesis is organised as follows.

Chapter 2: In this chapter, I cover the fundamentals of Dirichlet related non-

parametric Bayesian methods, which provide necessary background knowl-

edge for the development of models and algorithms in subsequent chap-

ters. These include the Dirichlet distribution, the Dirichlet process, the

Poisson-Dirichlet process, and the compound Poisson-Dirichlet process. In

the first section, I review basic definitions and properties of the Dirichlet

distribution. Subsequently, I discuss the three processes in detail from three

main aspects, i.e., definition, two different ways of construction (i.e., the

stick-breaking construction and the Chinese restaurant process representa-

tion), and hierarchical models. I put emphasis on the Chinese restaurant

representation, because it forms the basis of several Gibbs sampling algo-

rithms that are developed in Chapter 3 and used in Chapters 5 to 7.

Chapter 3: In this chapter, I introduce two new Gibbs sampling algorithms

for doing posterior inference for the PDP. One is based on the multiplicity

representation [Buntine and Hutter, 2010], the other is based on the table
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Figure 1.2: Dependency diagram of chapters and sections

indicator representation [Chen et al., 2011]. I compare the two samplers with

Teh’s sampling for seating arrangement sampler [Teh, 2006a] in a simple

controlled environment of multinomial sampling. The experimental results

show that the two new methods converge much faster than Teh’s sampler in

a simply controlled environment. Thereafter, I also develop Gibbs sampling

for the compound Poisson-Dirichlet process by presenting the joint posterior

distributions.

Chapter 4: In this chapter, I review probabilistic topic models, especially LDA. I

also discuss applications of topic models in various domains, e.g., infor-

mation retrieval, text analysis and computer vision. Finally, I cover some

typical extensions of LDA.
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Chapter 5: In this chapter, I introduce a new Segmented Topic Model (STM),

which incorporates a simple form of document structure, a document con-

sisting of multiple but exchangeable segments (e.g., paragraphs and sen-

tences). It maps the layout of segments to a hierarchical subject struc-

ture. The PDP is used to construct the hierarchy. An effective collapsed

Gibbs sampling algorithm that samples from the posterior of the model is

developed based on the CMGS algorithm introduced in Chapter 3. I com-

pare the new model with the standard LDA and other segmented topic

models on several document collections.

Chapter 6: In this chapter, I present a Sequential latent Dirichlet Allocation

model (SeqLDA), a novel extension of LDA. It is motivated by the under-

lying sequential document structure, i.e., each segment in a document is

correlated to its antecedent and subsequent segments via linkages among

their topics. Indeed, it maps the sequential document structure to a sequen-

tial subject structure, then embeds the PDP in a first-order Markov chain to

model the sequential topic dependencies. In such a way, we can explore how

topics within a document evolve over the document structure. For doing

the posterior inference, I adapt the CMGS algorithm in a hierarchical con-

text. Besides experiments on perplexity comparison, I apply the sequential

model to topic evolution analysis of several books.

Chapter 7: In this chapter, I propose an Adaptive Topic Model (AdaTM) that

integrates the two models introduced in Chapters 5 and 6. It considers

both hierarchical and sequential document structures via a simple DAG

structure. I extend the block table indicator Gibbs sampler introduced in

Chapter 3 to do the posterior inference over the DAG. Experimental results

indicate that AdaTM outperforms STM, SeqLDA and LDA in terms of

perplexity, and is able to uncover clear sequential structures in books, such

as Herman Melville’s “Moby Dick”.

Chapter 8 In this chapter, I summarise the key contributions of this thesis and

discuss possibilities for future research.



Chapter 2

Dirichlet Non-parametric Family

Hierarchical Bayesian reasoning is fundamental and used throughout the general

machine intelligence domain (e.g., text analysis and image processing) to model

distributions over observed data. It provides a valuable suite of flexible mod-

elling approaches for high dimensional structured data analysis. Recently, non-

parametric methods have become increasingly prominent in the machine learning

community. In non-parametric Bayesian methods, the prior and posterior distri-

butions are general stochastic processes [Hjort et al., 2010] whose support is a

space of distributions. These stochastic processes allow Bayesian inference to be

carried out in general infinite dimensional spaces, which can overcome the prob-

lem of over-/under-fitting of data encountered by parametric Bayesian methods.

In this chapter, I will focus on the foundation of one of the most important

families of non-parametric Bayesian methods, the Dirichlet non-parametric fam-

ily, which includes:

• the Dirichlet distribution (DD): a conjugate prior for parameters of the

multinomial distribution (Section 2.1),

• the Dirichlet process (DP): a probability distribution over distributions

(Section 2.2), it extends the DD to other domains,

• the two-parameter Poisson-Dirichlet process (PDP): a two-parameter gen-

eralisation of the DP (Section 2.3),

• the compound Poisson-Dirichlet process (CPDP): an extension of the PDP

that can be applied to multiple input distributions (Section 2.4).

9
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2.1 Dirichlet Distribution

The Dirichlet distribution [Ferguson, 1973; Antoniak, 1974; Sethuraman, 1994]

forms the first step toward understanding the DP/PDP models. It has been widely

used in areas such as topic modelling and probabilistic language models [Mackay

and Peto, 1995; Steyvers and Griffiths, 2007; Frigyik et al., 2010], where the

Dirichlet distribution has been proven to be particularly useful in modelling word

distributions. This section will describe the Dirichlet distribution and some of its

properties.

The Dirichlet distribution, a multi-parameter generalisation of the Beta dis-

tribution, defines a probability distribution on a space of all finite probability

vectors, i.e., the sampling result from a Dirichlet distribution is a distribu-

tion on some discrete probability space. Formally, the Dirichlet distribution of

order k is defined over a (k − 1)-dimensional probability simplex denoted by

∆k = {(θ1, θ2, . . . , θk) :
∑k

i=1 θi = 1, θi ≥ 0}.

Definition 2.1. (Dirichlet distribution). Let α = (α1, α2, . . . , αk) and αi >

0, for i = 1, . . . , k. A random vector θ ∈ ∆k is said to be Dirichlet distributed if

its probability density function with respect to Lebesgue measure is given by

p
(
(θ1, θ2, . . . , θk) |α

)
=

1

Betak(α)

k∏
i=1

θαi−1
i , (2.1)

and it is denoted as θ ∼ Dir(α). Betak(α) is a k-dimension Beta function that

normalises the Dirichlet, defined as

Betak(α) =

∏k
i=1 Γ(αi)

Γ
(∑k

i=1 αi

) .

The sum α0 =
∑k

i=1 αi serves as a precision parameter that measures the

sharpness of θ. It measures how different we expect typical samples θ to be from

the mean
(
α1

α0
, α2

α0
, . . . , αk

α0

)
. When all the components of α are equal to 1, the

Dirichlet distribution reduces to a uniform distribution over the simplex. While

they are all greater than 1, the density is concentrated on somewhere in the

interior of the simplex. Otherwise, if they are less than one, the density has sharp

peaks almost at vertices of the simplex. The support of the Dirichlet distribution

is the set of all normalised k-dimensional vectors whose components will be in an

interval (0, 1]. It means the support does not include vertices or edges.
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The Dirichlet distribution is reduced to the Beta distribution when k = 2. I

now describe some interesting properties of the Dirichlet distribution. More de-

tailed discussions of the Dirichlet distribution can be found in, for example, [Fer-

guson, 1973; Antoniak, 1974; Sethuraman, 1994; Bernardo and Smith, 1994].

2.1.1 Properties of the Dirichlet

In the general case, the mean vector, covariance, marginal distribution and mode

are given as follows.

Property 2.1. (Mean, Variance, Covariance, marginal, mode). If θ ∼ Dir(α)

and the precision α0 =
∑k

i=1 αi

E[(θ1, θ2, · · · , θk)] =

(
α1

α0

,
α2

α0

, . . . ,
αk
α0

)
V[θi] =

αi(α0 − αi)
α2

0(1 + α0)

Cov[θi, θj] =
−αiαj

α2
0(1 + α0)

(θi, 1− θi) ∼ Dir(αi, α0 − αi)

Mode(θ1, θ2, . . . , θk) =

(
α1 − 1

α0 − k
,
α2 − 1

α0 − k
, . . . ,

αk − 1

α0 − k

)
Property 2.2. (Conjugacy) Dirichlet Distribution θ ∼ Dir(α) is a conjugate

prior of the multinomial n |θ ∼ Multi(θ).

Proof. Let a discrete random vector n = (n1, n2, . . . , nk) with
∑k

i=1 ni = N ,

which is multinomial distributed in a k-dimensional space with parameters θ =

(θ1, θ2, . . . , θk); and θ be Dirichlet distributed with parameters α = (α1, . . . , αk).

Then, using Bayes rule, the posterior distribution is

p(θ |n) ∝ p(n |θ)p(θ)

∝

(
N !

n1!n2! . . . nk!

k∏
i=1

θnii

)(
1

Betak(α)

k∏
i=1

θαi−1
i

)

∝
k∏
i=1

θni+αi−1
i

Hence, θ |n ∼ Dir(α+ n).

This Dirichlet-Multinomial conjugate property is the key ingredient to com-

pute the conditional posterior distribution in Dirichlet-Multinomial mixture mod-

els. It assists in the implementation of efficient Markov Chain Monte Carlo
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(MCMC) algorithms. For example, the collapsed Gibbs sampling algorithms in

topic models (e.g., Latent Dirichlet Allocation [Griffiths and Steyvers, 2004])

make use of Dirichlet-Multinomial Conjugacy to compute the conditional poste-

rior distribution with some latent variables marginalised out, which makes the

Gibbs sampling collapsed, instead of sampling the whole latent space. Thereby,

a simple approximate inference algorithm can be obtained. The importance of

Dirichlet-Multinomial Conjugacy will be further observed in the development of

structured topic models in Chapters 5, 6 and 7.

In addition to conjugacy, the Dirichlet distribution has a useful fractal-like

property, named aggregation, that if parts of the sample space are aggregated

together, the new partition of the space is still Dirichlet distributed [Ferguson,

1973].

Property 2.3. (Aggregation) In general, if I1:m is a partition of {1, 2, . . . , k},
and (x1, x2, . . . , xk) ∼ Dir(α1, α2, . . . , αk), then(∑

i∈I1

xi, . . . ,
∑
i∈Im

xi

)
∼ Dir

(∑
i∈I1

αi, . . . ,
∑
i∈Im

αi

)
(2.2)

2.1.2 Sampling from the Dirichlet Distribution

The Dirichlet distribution can be constructed in three different ways via the

Gamma distribution, the stick-breaking construction, and the Polya Urn scheme

respectively. They provide concrete representations of how to generate samples

from a Dirichlet distribution.

Dirichlet Distribution through the Gamma Distribution

Ferguson [1973] defined the Dirichlet distribution in a slightly more general way by

transforming Gamma-distributed random variables. Generating a Dirichlet distri-

bution from these Gamma random variables has following steps: let z1, z2, . . . , zk

be Gamma-distributed random variables,

1. For i = 1, 2, . . . , k, draw zi ∼ G(αi, 1), where αi > 0.

2. For i = 1, 2, . . . , k, θi = zi∑k
i=1 zi

.

3. Then, (θ1, θ2, . . . , θk) ∼ Dir(α1, α2, . . . , αk).

It has been proven that the distribution generated with the steps above is

always singular with respect to Lebesgue measure in k-dimensional space since
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∑k
i=1 θi = 1 [Ferguson, 1973]. Following this construction, the proof of Property

2.3 is straightforward by using the additive property of the Gamma distribution:

if zi ∼ G(αi, 1) and zj ∼ G(αj, 1), where i 6= j, and if zi and zj are independent,

then zi + zj ∼ G(αi + αj, 1).

Dirichlet Distribution through the Stick-breaking Construction

The stick-breaking construction is a process of iteratively breaking off pieces of a

stick of length one. Random variables drawn from a Dirichlet distribution can be

simulated by lengths of the pieces broken off from the stick in a random way, such

that the lengths follow a Dirichlet distribution [Sethuraman, 1994; Ishwaran and

James, 2001]. This uses the marginalisation property of the Dirichlet distribution,

see Property 2.1.

Let V1, V2, . . . , Vk be intermediate random variables drawn from a Beta dis-

tribution, i.e., Vi ∼ Beta
(
αi,
∑k

j=i+1 αj

)
. A Dirichlet distribution can be con-

structed via the stick-breaking construction with following steps:

1. Draw V1 ∼ Beta
(
α1,
∑k

j=2 αj

)
, set θ1 = V1. The remaining piece has length

1− V1.

2. For 2 ≤ i ≤ k−1, draw Vi ∼ Beta
(
αi,
∑k

j=i+1 αj

)
, and set θi = Vi

∏i−1
j=1(1−

Vj).

3. The length of remaining piece
∏k−1

j=1(1− Vj) is θk.

Finally, the derived vector of random variables (θ1, θ2, . . . , θk) is Dirichlet

distributed with parameters (α1, α2, . . . , αk).

Dirichlet Distribution through the Urn Scheme

The Dirichlet distribution can be constructed from the Urn model [Johnson and

Kotz, 1977]. Blackwell and Macqueen [1973] have shown that the distribution of

colors in an urn after n draws converges as n→∞ to a Dirichlet distribution in

a finite space (i.e., the number of colors is finite). It is known as the Polya Urn

scheme.

To generate a Dirichlet distribution from the Polya Urn scheme with parame-

ters (α1, α1 . . . , αk), we start with an urn with α0 =
∑k

i αi balls of which αi balls1

are of color i, 1 ≤ i ≤ k. At each step, we draw a ball uniformly at random from

1In general, αi is not necessarily an integer, so we might have a rational number of balls of

each color in the urn initially.
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the urn, and then place it back to the urn along with another ball of the same

color. After n → ∞ steps, the proportions of balls of each color converge to a

limiting discrete distribution, which is shown to be a Dirichlet distribution.

Mathematically, let Xi be a color random variable, a Dirichlet distribution

can be constructed via the Polya Urn scheme as:

1. For the first draw, a ball with color i is drawn with probability

p(X1 = i) =
αi∑k
i′=1 αi′

.

2. Draw the (n+ 1)th draw, a ball with color i is drawn with probability

p(Xn+1 = i |X1, . . . , Xn) =
αi +

∑n
j=1 1Xj=i∑k

i′=1 αi′ + n
.

2.2 Dirichlet Process

This section provides a brief overview of the Dirichlet process (DP) mainly based

on the work of Ferguson [1973]; Antoniak [1974]; Teh [2010]; Teh et al. [2006]. A

high-level tutorial can be found in [Jordan, 2005; Teh, 2007]. Along with the basic

definition, constructions of a Dirichlet process from the stick-breaking process

and the Chinese restaurant process (CRP) [Aldous, 1985] will be presented. In

addition, I will discuss some hierarchical extensions of the Dirichlet process.

In probability theory, a DP is a stochastic process that can be taken as a

probability distribution over distributions. It is, as a non-parametric Bayesian

method, most useful in models in which each mixture component is a discrete

random variable of unknown cardinality. A canonical example of such a model

is the infinite mixture model (i.e., the DP mixture model), where the discrete

random variables may indicate clusters.

Let (X ,B) be a measurable space, for a random probability distribution G to

be distributed according to a DP, its marginal distributions have to be Dirichlet

distributions. Ferguson [1973] gave a formal definition of the DP as follows.

Definition 2.2. (Dirichlet Process). Let H be a random measure on (X ,B) and

α be positive real number. We say a random probability measure G on (X ,B) is

a Dirichlet process with a base measure H and a concentration parameter α, i.e.

G ∼ DP(α,H), if for any finite measurable partition (B1, B2, . . . , Bk) of X , the

random vector (G(B1), G(B2), . . . , G(Bk)) is Dirichlet distributed with parameter

(αH(B1), αH(B2), . . . , αH(Bk)):

(G(B1), G(B2), . . . , G(Bk)) ∼ Dir(αH(B1), αH(B2), . . . , αH(Bk)) .
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The support of G is the same as H. The existence of the DP is guaranteed

by either the Kolmogorov’s consistency theorem or the de Finetti’s theorem. One

important property of the DP is that distributions drawn from a DP are discrete

with probability one [Ferguson, 1973]. That means the previously drawn values

have strictly positive probability of being redrawn again, which can be proven in

the two construction methods of the DP in the next section.

Corollary 2.1. According to Definition 2.2, if H is a probability vector over a

finite space, then the following holds

DP(α, Discrete(H)) = Dir(αH) .

Thus, the DP is an extension of a Dirichlet distribution.

We can draw a sequence of independently and identically distributed (i.i.d.)

random variables from G. Theoretically, the sequence can be infinite. Then after

marginalising out G, these random variables follow a Blackwell-Macqueen distri-

bution [Blackwell and Macqueen, 1973], also known as the CRP. I will show that

a DP can be constructed via the CRP in next section.

Property 2.4. (Mean, Variance, and Covariance) If G ∼ DP(α,H), for any

measurable set B ∈ B,

E(G(B)) = H(B)

V(G(B)) =
H(B)(1−H(B))

α + 1

Cov(G(B), G(B′)) = −H(B)H(B′)

α + 1
s.t. B′ ∩B = ∅

The base measure H and the concentration parameter α play important roles

in the construction of a DP. Specifically, the base measure is the mean of the

DP, and the concentration parameter α, also known as a precision parameter

[Rodŕiguez et al., 2008], controls the variance between G and H. Large α means

the DP concentrates more mass around the mean. When the base measure is non-

atomic (or continuous), H(X) = 0 for all X ∼ H, thus samples from H are almost

surely distinct, e.g., a probability distribution such as Gaussian. With respect

to discrete applications that are common in computer science and intelligent

systems, the non-atomicity of the base measure does not always hold. Thus,

when the base measure is atomic, H(X) > 0 for all samples X ∼ H.

The posterior distribution of the DP is still a DP with updated concentration

parameter and base measure over partitions of X . Let x1, x2, . . . , xn be a sequence
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of i.i.d. draws from G, and xi take values on X . With Dirichlet-Multinomial

conjugacy (Property 2.2) and some algebra, we can yield the posterior of the DP

as

G |x1:n ∼ DP

(
α + n,

α

α + n
H(·) +

n

α + n

∑n
i=1 δxi(·)
n

)
, (2.3)

where δxi(·) is the point mass located at xi. The updated concentration param-

eter is α + n, and the base measure is changed to
αH+

∑n
i=1 δxi (·)

α+n
. The predictive

distribution xn+1 |x1:n is the updated base measure of the posterior of DP. I will

show the derivation of predictive probability in the CRP interpretation for the

DP in Section 2.2.1.

2.2.1 Construction of the Dirichlet Process

There are two well known ways of drawing samples from a Dirichlet process. One

is the stick-breaking construction for the DP, where two sequences of i.i.d. ran-

dom variables need to be generated. It can be simulated by randomly breaking

a unit stick into pieces with different weights. The other is the CRP interpreta-

tion according to the Polya Urn scheme [Blackwell and Macqueen, 1973], which

gives us a straightforward way of generating posterior samples from a random

distribution given observations.

Dirichlet Process via the Stick-breaking Construction

The stick-breaking construction [Sethuraman, 1994] is a concrete representation

of draws from G, where G ∼ DP(α,H). It is a weighted sum of the point masses

at atoms. The process of stick-breaking also provides a straightforward proof of

the existence of DPs [Teh, 2010].

Theorem 2.2. (The stick-breaking construction for the DP) Let (Vk)
∞
k=1 and

(X∗k)∞k=1 be independent sequences of i.i.d. random variables, the stick-breaking

construction of the DP has the following form:

Vk |α,H ∼ Beta(1, α) X∗k |α,H ∼ H

pk = Vk

k−1∏
j=1

(1− Vj) G =
∞∑
k=1

pkδX∗k (·) ,

where δX∗k (·) is a discrete probability measure that concentrates at X∗k , and
∑∞

k=1 pk =

1 with probability one.
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Metaphorically, the process of generating a sequence of pk can be understood

as iteratively breaking off pieces with random lengths from a stick, subject to the

length of the initial stick is one. Similar to the stick-breaking construction for

the Dirichlet distribution in Section 2.1.2, the stick-breaking for the DP goes as

follows:

1. Take a stick of length one and randomly break it into two parts with pro-

portions V1 and 1− V1. The first broken stick has length p1 = V1.

2. Then take the remaining part, of length 1− V1 and apply the same process

to randomly break into proportions V2 and 1−V2. This second broken stick

is the first part, of length p2 = (1− V1)V2.

3. Again, we take the remaining part, of length (1 − V1)(1 − V2), and ap-

ply the same process repeatedly. So the length of kth stick becomes pk =

Vk
∏k−1

j=1(1− Vj) for k > 2.

Ishwaran and James [2001] presented a truncated stick-breaking construction,

in which the number of sticks is set to some truncation level K that can be

determined by the moments of the random breaking weights, and the K+1, K+

2, . . . sticks are discarded. The length of last stick is set to pK = 1−
∑K−1

j=1 pj. In

most real world scenarios, the DP mixture models are in an effectively finite state

space, such as those adapted for natural language processing, language modelling,

and computer vision.

Dirichlet Process via the Chinese Restaurant Process

The Chinese restaurant process (CRP), also known as the Blackwell-Macqueen

Urn scheme, asymptotically produces a partition of integers [Blackwell and Mac-

queen, 1973]. It is shown that samples from a Dirichlet process are discrete and

exhibit a clustering property [Teh et al., 2006].

The CRP is an elegant analogy of incremental sampling for the DP. It refers to

draws from G, instead of referring to G directly, which means it is easy to describe

the distribution by specifying how to draw samples from it. Let {X∗1 , X∗2 , . . . , X∗K}
be a set of distinct values drawn from the base measure H (Note H is non-atomic,

and K can be infinitely large, i.e., K →∞). Those distinct values are taken on by

random samples x1, x2, . . . , xn that are i.i.d. given G, and n∗k =
∑n

i=1 1xi=X∗k . With

G marginalised out and given the first n observations, the posterior distribution

(or the predictive distribution) of the (n+ 1)th random variable has the following
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Figure 2.1: A CRP representation for a DP with a continuous base distribution

that makes the dish served at each table to be distinct. Circles are tables, each

kth table has a label tk. xns are customers, and X∗k ’s are dishes. tk = X∗k indicates

the kth table serves X∗k .

form

xn+1 |x1, x2, . . . , xn, α,H ∼
K∑
k=1

n∗k
n+ α

δX∗k (·) +
α

n+ α
H(·) . (2.4)

We can interpret the posterior distribution of the DP in terms of a Chinese

restaurant metaphor, as shown in Figure 2.1. Consider a Chinese restaurant with

an infinite number of tables, each of which has infinite seating capacity. Each

table tk serves a dish, i.e., a distinct value X∗k . A sequence of customers, labeled

by x1, x2, . . . , xn, arrive in the restaurant. The first customer sits at the first table;

the (n+1)th customer can choose either an occupied table or opening a new table

with following probabilities,

p(kth occupied table) ∝ n∗k
n+ α

p(next new table) ∝ α

n+ α
.

In the sense of CRP, the concentration parameter α controls how often a

newly arrived customer opens a new table. The larger α is, the more tables will

be activated, which further corresponds to the smaller the variance between G

and H. Another important property of the DP is the reinforcement effect: the

more customers sit at the kth table, the more likely the kth table will be chosen

by subsequent customers.

2.2.2 The Hierarchical Dirichlet Process

As a widely used non-parametric Bayesian method for discrete random distribu-

tions, the DP has been extended in different ways to deal with dependencies that

exists in various data, such as grouped data, streamed data and time-stamped

data. For example, MacEachern [1999] introduced the dependent DP (DDP) to
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handle dependencies in a collection of distributions, which is a quite general

framework; and Lin et al. [2010] gave a new Poisson processes based construction

for the DDP. One special case of the DDP general framework is the hierarchical

DP (HDP) [Teh et al., 2006]. In the HDP, multiple group specific distributions

are drawn from a common DP whose base distribution is in turn drawn from an-

other DP. Some other extensions include the nested DP [Rodŕiguez et al., 2008]

and spatial DP [Duan et al., 2007]. In this section, I give a brief overview of the

more widely used HDP model.

Motivated by sharing atoms across different data groups, Teh et al. [2006]

introduced the HDP, in which the base measure G0 of a Dirichlet process for each

data group is drawn from another Dirichlet process with base measure H. In

such a way, G0 is forced to be discrete, and distinct values drawn from the top

level base measure H are shared with different weights among draws from the

low level Dirichlet process. The support of draws from the HDP is the same as

that of H. The precise definition of the HDP is given in [Teh et al., 2006], and a

further description can be found in [Teh and Jordan, 2010].

Definition 2.3. (Hierarchical Dirichlet Process [Teh et al., 2006]) Let γ and α be

concentration parameters, H is a baseline measure on a measurable space (X ,B),

G0 is the intermediate base measure, the HDP is defined as

G0 | γ, H ∼ DP(γ, H)

Gi | α,G0 ∼ DP(α, G0), for i ∈ {1, . . . , I},

where {1, 2, . . . , I} is an index set which indexes a collection of Dirichlet pro-

cesses, {G1, G2, . . . , GI}. Each Gi corresponds to a data group and is defined on

(X ,B).

Obviously, the HDP is also a probability distribution over a set of random

distributions over a measurable space (X ,B), and shares similar properties to

the DP. It links a number of probability distributions by letting them share the

same base measure. Teh et al. [2006] presented the stick-breaking construction

and a Chinese restaurant representation for the HDP, analogous to the DP. Here,

I describe the latter, named Chinese restaurant franchise (CRF) by Teh et al.

[2006], which not only elaborates the combinatorial structure of the HDP in a way

of incremental sampling, but also provides the ground of the subsequent discussion

of the Poisson-Dirichlet process and various Gibbs sampling algorithms.

The CRF is an analog of the Chinese restaurant process for the HDP with

all the Gi and their base measure G0 marginalised out, i.e., the marginalisation
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of the HDP. Actually, it extends the CRP representation for the DP to handling

multiple Chinese restaurants that are conditionally independent to each other.

Metaphorically, suppose there is a global menu with dishes (i.e., distinct values

drawn from H), and at each restaurant, each table is associated with a dish from

the menu. A customer chooses a dish by choosing a table. More specifically,

arriving in a restaurant that corresponds to Gi, a customer can either choose

to sit at an occupied table to share the dish with other customers or to open a

new table. If the customer sits at a new table, a dish must be ordered from the

global menu. In the CRF, choosing a dish from the global menu is equivalent to

sending the new table as a proxy customer [Mochihashi and Sumita, 2008] to the

corresponding parent restaurant (G0), and then repeating the Chinese restaurant

process analogy of the DP to choose the dish from H. In this sense, the HDP

is a hierarchical CRP. The precise nature of sharing atoms across data groups

induced by the HDP is mimicked by sharing dishes among multiple restaurants.

Mathematically, let xi = (xi,1, xi,2, . . . , xi,Ji) be a sequence of Ji customers

in a restaurant i, xi,j is one entry in xi that are random variables distributed

according to Gi. Dishes in the global menu are denoted by {X∗1 , X∗2 , . . . , X∗K}
that are i.i.d. draws from H. Furthermore, let yi = (yi,1, yi,2, . . . , yi,Ti) be the

dishes served at tables in the ith restaurant and be distributed according to the

intermediate base probability measure G0, where Ti is the number of currently

occupied tables in restaurant i, and yi,t ∈ {X∗1 , X∗2 , . . . , X∗K}. Clearly, all the

customers xi take the values on {X∗1 , X∗2 , . . . , X∗K} via the intermediate random

variables yi. Let n∗i,t be the number of customers sitting at table t in restaurant

i, and n′k be the total number of tables in all the restaurants serving dish X∗k ,

n′k =
∑I

i=1

∑Ti
t=1 1yi,t=X∗k . In this setup, restaurants correspond to DPs associating

with data groups, and customers are factors.

Now, the marginal probabilities of the HDP are computed by integrating out

the random distributions Gi and G0 recursively with the CRP. First, integrating

out Gi yields the conditional probability of xi,Ji+1 given by the posterior (2.4),

xi,Ji+1 |xi, α, G0 ∼
Ti∑
t=1

n∗i,t
α + Ji

δyi,t(·) +
α

α + Ji
G0(·) . (2.5)

The probability of drawing a random variable from the above mixture is ac-

cording to mixture proportions on the right-hand side of the formula. Since all

y1:I are i.i.d. according to G0, which is again Dirichlet process distributed, we

can readily marginalise out G0 by using the same posterior (2.4). Thus, the con-
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ditional probability for yi,Ti+1 is

yi,Ti+1 |y1:I , γ, H ∼
K∑
k=1

n′k
γ +

∑K
k=1 n

′
k

δX∗k (·) +
γ

γ +
∑K

k=1 n
′
k

H(·) . (2.6)

The posterior structure of the HDP can easily be obtained in regard to the

posterior of the DP, Equation (2.3). Thus, given x1:I and y1:I , the posterior

distributions are stipulated respectively by

G0 |y1:I , γ,H ∼ DP

(
γ +

K∑
k=1

n′k,
γH(·) +

∑K
k=1 n

′
kδX∗k (·)

γ +
∑K

k=1 n
′
k

)
,

Gi |x1:I , α,G0 ∼ DP

(
α +

Ti∑
t=1

n∗i,t,
αG0(·) +

∑K
k=1

∑
t:yi,t=X∗k

n∗i,tδX∗k (·)

α +
∑Ti

t=1 n
∗
i,t

)
.

Clearly, the recursive construction of the HDP can be generalised to arbi-

trary hierarchical structures by recursively putting DPs together [Teh and Jor-

dan, 2010]. However, these hierarchies should be tree structures, since the DP

only allows one base measure. In Section 2.4, I will show how to extend the DP

to handling multiple base measures.

2.2.3 Variants of the HDP

The HDP allows the sharing of atoms among multiple groups of data. The under-

lying assumption is that these data groups are exchangeable. The exchangeability

is possessed by the i.i.d. draws (i.e., G1:I) from the same base measure. How-

ever, there are many applications for which the exchangeability assumption is

not suitable and needs to be removed to further incorporate other dependencies

for complex data structures, such as the temporal structure (e.g., time stamped

documents and music). These have motivated various extensions of the HDP that

have been studied in the Bayesian non-parametric literature.

A way to extend the HDP is to introduce dependence among realisations of

independent HDPs, such as the dynamic HDP (DHDP) proposed by Ren et al.

[2008], with more details in [Ren et al., 2010]. To consider the statistical depen-

dency among the time-evolving data, the DHDP uses a Hidden Markov Model

(HMM) to incorporate time-evolving parameters, such as time stamps, to further

chain a set of HDPs in a linear way, i.e., Gj = (1−wj−1)Gj−1 +wj−1Hj−1. In the

DHDP setting, a set of innovation distributions, {H1, H2, · · · , HJ−1} and G1 are

draws from the same HDP, as shown in Figure 2.2. We can see that the probabil-

ity distribution Gj at time stamp j is indeed a weighted sum of the probability
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Figure 2.2: The dynamic HDP model

distribution Gj−1 and the innovation distribution Hj−1 that are generated at the

previous time stamp j − 1. In this way, Gj can be modified from Gj−1 by adding

an new innovation distribution Hj−1. The probability of innovation is controlled

by the weight wj−1. Furthermore, since G1 and all the Hs are drawn from the

same HDP, atoms are shared across sequential datasets that are no longer ex-

changeable. Therefore, the evolution is done by changing the mixture weights

associating with atoms sequentially along the time line. A simplified version of

the DHDP [Pruteanu-Malinici et al., 2010] has been applied to topic modelling

to study the change of topic mixture weights over time. In this simplified version,

probability distributions drawn from a HDP are approximated by those drawn

from a Dirichlet distribution, see Corollary 2.1.

Unlike the DHDP, Zhang et al. [2010] have extended the HDP to a five-level hi-

erarchy to explore the cluster evolution patterns over time and cross corpora. This

model is called an evolutionary HDP (EvoHDP). It uses a coupled Markov chain

to link multiple HDPs through their intermediate base distributions, instead of

linearly combining a set of probability distributions drawn from a HDP. Specifi-

cally, let Gj
i and Gj−1

i indicate probability distributions associated with a corpus

i at time j and j − 1 respectively, Gj
0 be a global base distribution at time j for

all the corpora. Gj
i is generated as Gj

i ∼ DP
(
αji , w

j
iG

j−1
i + (1− wji )G

j
0

)
, where

wji is the mixture weight for the corpus i at time j. Similarly, let G be an overall

base distribution drawn from a DP with base distribution H. The global base

distribution Gj
0 is generated as Gj

0 ∼ DP
(
α′j, w

′
jG

j−1
0 + (1− w′j)G

)
, where w′j is

the mixture weight for Gj
0. Clearly, the base distribution for drawing either Gj

i or

Gj
0 is a weighted sum of two distributions. The authors use two chains on Gj

i ’s

and Gj
0’s to model patterns of cluster evolution within each individual corpus

and across corpora respectively. I will show that their way of constructing the

two chains can be taken as a special variant of the compound Poisson-Dirichlet

process introduced in Section 2.4. Both DHDP and EvoHDP are two complex
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models, that are different from models developed in Chapters 5 to 7 in terms

of data being modelled and modelling objectives. They may not be suitable for

modelling document structures.

These and some other variants of the HDP have the same characteristic

that the shared atoms are fixed across data groups, which are either tempo-

rally streamed or have other kinds of dependencies, and only the mixture weights

are changed in a way according to different data structures. Can atoms them-

selves change along the data structure without violating the underlying depen-

dencies? Ahmed and Xing [2010] introduced a new dynamic HDP where not only

the mixture weights change dynamically, but also the atoms can either retain, die

out or emerge over time. This dynamic HDP adapts the recurrent CRP, proposed

in [Ahmed and Xing, 2008], which uses a time-decaying kernel to control the life

span of atoms over time. Atoms at the current time period are dependent on

those at the previous ∆ time periods, which enhances the statistical similarity

between adjacent time slices.

Replacing random atoms in the DP with random probability distributions,

Rodŕiguez et al. [2008] developed the nested Dirichlet process (NDP) to deal with

multilevel clustering problems in a nested setting. Under the Chinese restaurant

metaphor, the NDP clusters customers within each restaurant and also clus-

ters restaurants at the same time. While clustering the customers within each

restaurant, the NDP can borrow the statistical information obtained from the

clustering in other restaurants. A distribution drawn from a NDP can be written

as Gj ∼ Q, and Q ≡ DP (α,DP (β,H)). The stick-breaking construction for the

NDP [Rodŕiguez et al., 2008] is

V ′l,k | β ∼ Beta(1, β) X∗l,k |H ∼ H(·)

ρ∗l,k = V ′l,k

l−1∏
s=1

(1− V ′s,k) G∗k ≡
∞∑
l=1

ρ∗lkδX∗l,k(·)

Vk |α ∼ Beta(1, α) π∗k = Vk

k−1∏
s=1

(1− Vs)

Gj ∼ Q ≡
∞∑
k=1

π∗kδG∗k(·) .

According to this construction for the NDP and that for the HDP [see Teh

et al., 2006, Section 4.1], the difference between dependencies induced by the HDP

and the DNP are straightforward, even though both of them allow hierarchical

data structures. Changing atoms to random probability distributions may provide
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more flexibility than the HDP to cluster observations together with co-clustering

the distributions.

2.2.4 Dirichlet Process Mixture Models

The DP related processes cannot be used to model data directly because the

probability distributions drawn from a DP are discrete. Instead, they are more

naturally used as a prior on top of hierarchical models, which yields the Dirichlet

mixture model, DPM [Antoniak, 1974].

Let wi be an observation with a distribution F (θi) given factor θi that is

i.i.d. drawn from a random probability measure G. Given θi, the observations are

conditionally independent to each other. If G is Dirichlet process distributed, we

can then derive the DPM as

wi ∼ F (θi) for i = 1, 2, . . . , n

θi ∼ G for i = 1, 2, . . . , n

G ∼ DP(α,H) .

With respect to Dirichlet-multinomial conjugacy, F (·) is set to be a multino-

mial distribution in many language and image related applications, for instance,

the probabilistic topic models, the n-gram model, image processing, etc. Similarly,

the HDP mixture models can be represented as

wi,j ∼ F (θi,j) for i = 1, 2, . . . , I; j = 1, 2, . . . , Ji

θi,j ∼ Gi for i = 1, 2, . . . , I; j = 1, 2, . . . , Ji

Gi ∼ DP(α,G0) for i = 1, 2, . . . , I

G0 ∼ DP(γ,H) .

2.3 Poisson-Dirichlet Process

The two-parameter Poisson-Dirichlet process (PDP), also known as the Pitman-

Yor process (PYP) [Ishwaran and James, 2001], is a two-parameter generalisation

of the Dirichlet process. Similar to the DP, it is a probability distribution over

distributions over a measurable space (X ,B), and parameterised with a discount

parameter 0 ≤ a < 1, a concentration parameter b > −a, and a random base

measure H over X , i.e., PDP(a, b,H). We can write G ∼ PDP(a, b,H), if a

probability distribution G is PDP distributed.
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As in the case of a DP, the most important application of the PDP is as a non-

parametric prior for parameters of mixture models. For example, the PDP and

its hierarchical extensions provide useful machinery for improving the standard

topic model [Blei et al., 2003; Buntine and Jakulin, 2006; Sato and Nakagawa,

2010], the n-gram model [Teh, 2006a,b] and models of grammar [Johnson et al.,

2007; Wallach et al., 2008]. By simply replacing the DP with the PDP, the PDP

mixture model can be derived as follows:

wi ∼ F (θi) for i = 1, 2, . . . , n

θi ∼ G for i = 1, 2, . . . , n

G ∼ PDP(a, b, H) ,

where wi indicates observations, θi indicates factors i.i.d. drawn the PDP, and

F (θi) denotes the factor specific distribution of the observations. If the factor is

given, the observations are conditionally independent. Similar to the DP, the PDP

is a device for introducing infinite mixture models and for hierarchical Bayesian

modelling of discrete probability distributions.

In this section I will give a brief introduction to the PDP, and discuss analogs

of the three perspectives presented in Section (2.2) for the DP, i.e., the stick-

breaking construction, the CRP representation, and the hierarchical PDP. For

more in depth discussion, please refer to Pitman and Yor [1997]; Ishwaran and

James [2001]; Buntine and Hutter [2010]. A high-level tutorial from a machine

learning perspective can be found in Jordan [2005] and Rodŕiguez [2011].

2.3.1 Poisson-Dirichlet Distribution

Similar to the DP, the basic form of the PDP has as input a random base measure

H on a measurable space (X ,B), and yields a discrete distribution on a finite or

countably infinite subset of X ,

∞∑
k=1

pkδX∗k (·) , (2.7)

where p = (p1, p2, . . . ) is a probability vector so 0 ≤ pk ≤ 1 and
∑∞

k=1 pk = 1.

Also, δX∗k (·) is a probability mass concentrated at X∗k . The values X∗k ∈ X are

i.i.d. according to H, which is referred to as the base measure. As discussed in

Section 2.2, the base measure can be either continuous or discrete. The probability

vector p follows a two parameter Poisson-Dirichlet distribution [Pitman and Yor,

1997] given in Definition 2.4.
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Definition 2.4. (Poisson-Dirichlet distribution) For 0 ≤ a < 1 and b > −a,

suppose that a probability distribution Pa,b governs independent random variables

Vk such that Vk has a Beta distribution. Let

Vk | a, b ∼ Beta(1− a, b+ ka)

pk = Vk

k−1∏
j=1

(1− Vj) for k = 1, 2, . . . ,∞,

yielding p = (p1, p2, . . . ). Define the Poisson-Dirichlet distribution with parame-

ters a, b, abbreviated PDD(a, b) to be the Pa,b distribution of p.

Note Definition 2.4 assumes a particular ordering of the entries in p, but when

used in Equation (2.7) any order is lost so this does not matter.

2.3.2 PDP via the Stick-breaking Construction

The stick-breaking construction for the PDP can directly be derived by extending

the Poisson-Dirichlet distribution with Equation (2.7).

Theorem 2.3. (The stick-breaking construction for the PDP) Let Vk be a Beta

distributed random variable and pk be the stick-breaking weight, a probability dis-

tribution G drawn from a PDP can be derived by the following constrution

Vk | a, b ∼ Beta(1− a, b+ ka)

X∗k |H ∼ H

pk = Vk

k−1∏
j=1

(1− Vj)

G =
∞∑
k

pkδX∗k (·) , k = 1, 2, . . . ,∞

It is easy to observe that the PDP stick-breaking construction reduces to the

DP stick-breaking construction, see Theorem 2.2, when the discount parameter a

is equal to 0. The simulation of iteratively breaking off pieces with random lengths

from a stick can be found in Section 2.2.1. More discussion about the PDP stick-

breaking construction can also be found in [Ishwaran and James, 2001; Teh and

Jordan, 2010; Buntine and Hutter, 2010].

2.3.3 PDP via the Chinese Restaurant Process

Another important approach to construct a PDP is to use the CRP metaphor,

a particular interpretation for a marginalised version of the PDP. The CRP also
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gives an analogy of incremental sampling from the posterior of the PDP. Sup-

pose a sequence of data have been sampled from a random distribution G ∼
PDP(a, b,H). Let the sampled data be x1, x2, ..., xN , then what is the conditional

distribution of xN+1 after marginalising out G? While the base distribution is

non-atomic or continuous (the probability of repeated draws is effectively zero),

the conditional distribution is [Ishwaran and James, 2001]

p(xN+1 |x1, x2, ..., xN , a, b,H) =
K∑
k=1

n∗k − a
N + b

δX∗k (·) +
Ka+ b

N + b
H(·) , (2.8)

whereK is the distinct number of values in x1, x2, . . . , xN ordered asX∗1 , X
∗
2 , ..., X

∗
K

(i.e., draws from H) with respective counts n∗1, n
∗
2, . . . , n

∗
K , and theoretically K

can be infinitely large. These are modelled with the notion of tables in a Chinese

restaurant in the CRP terminology, the k-th table has n∗k customers seated and

they are having dish X∗k .

When the base distribution is discrete, and all probabilities are finite, this con-

ditional probability must be modified since draws from H can be repeated. That

is, when sampling from H, the probability of X∗k = X∗l (for k 6= l) is positive. It

has been observed the dish being served but cannot tell if it comes from the same

table or not. For example, there are three tables in Figure 2.3 serving the same

dish X∗1 . However, just given X∗1 , we cannot tell which table, t1, t4 or t5, it comes

from. This observation also applies to the CRP representation for the DP.

With the discrete base distribution and a finite sample, we can have a latent

variable t∗k that is the number of tables serving the dish X∗k and the total count

n∗k of customers having dish X∗k across t∗k tables is spread with latent counts

mk,1, ...,mk,t∗k
where n∗k =

∑t∗k
j=1 mk,j. For example, there are thirteen customers

in the restaurant in Figure 2.3 that are sitting at five tables. The customers

counts are n∗1 = 5, n∗2 = 4 and n∗3 = 4, and the table counts are t∗1 = 3, t∗2 = 1,

t∗3 = 1. The customer counts are spread to tables. In the case of just observing

the total counts but not the partition across tables, we can derive the following

conditional distribution

p(xN+1 |x,m, t∗, a, b,H) =
K∑
k=1

t∗k∑
j=1

mk,j − a
N + b

δX∗k (·) +
Ta+ b

N + b
H(·) (2.9)

=
K∑
k=1

n∗k − at∗k
N + b

δX∗k (·) +
Ta+ b

N + b
H(·) , (2.10)

where t∗ = (t∗1, t
∗
2, . . . , t

∗
K), and T =

∑K
k=1 t

∗
k. Sampling from the above equations

makes explicit whether a new table is created or which existing table is used



28 CHAPTER 2. DIRICHLET NON-PARAMETRIC FAMILY

。。。

1

2

3

8

10

9
x

x

x
x

x

x
4

11

6

5

x
x

x
x

7

12x

xt3=X
*

=X2
*

t1=X1
*

=X1
*

t2=X
*

=X3
*

t3=X
*

=X2
*

t4=X
*

=X1
*

13x
t5=X

*

=X1
*

Figure 2.3: A CRP representation for a PDP with a discrete base distribu-

tion. There are thirteen customers, five tables with three dishes being served. A

dish now can be served by multiple tables, which is different to Figure 2.1.

for the new sample. Equations (2.9) and (2.10) will be used to derive two Gibbs

samplers that will be discussed respectively in Sections 3.2 and 3.3.

2.3.4 Hierarchical Dirichlet-Poisson Process

As discussed in Section 2.3.1, the PDP is a probability function on distributions:

it takes as input a random base distribution and yields as output a discrete

probability distribution, which has a finite or countable set of possible values on

the same domain. When the base distribution is itself discrete, the PDP yields a

new discrete distribution that is somewhat similar; the greater b is, the smaller

variance of the two distributions will be (Generally, the variance is of order 1−a
1+b

[Buntine and Hutter, 2010].).

The output probability of a PDP can be recursively used as a base distribution

for another PDP to create a hierarchy of distributions. This hierarchy is the so-

called hierarchical PDP (HPDP), or the hierarchical Pitman-Yor process [Teh,

2006b; Teh and Jordan, 2010]. It is a generalisation of the HDP. Analogous to

the HDP, the HPDP is defined as

G0 | a0, b0, H ∼ PDP(a0, b0, H)

Gi | ai, bi, G0 ∼ PDP(ai, bi, G0), for i ∈ {1, . . . , I} .

With a simple modification of the conditional probabilities given by Equa-

tions (2.5) and (2.6), one has the following conditional probabilities for the HPDP

yi,Ti+1 |y1:I , a0, b0, H ∼
K∑
k=1

n′k − a0

b0 +
∑K

k=1 n
′
k

δX∗k (·) +
b0 + a0K

b0 +
∑K

k=1 n
′
k

H(·)

xi,Ji+1 |xi, ai, bi, G0 ∼
Ti∑
t=1

n∗i,t − ai
bi + Ji

δyi,t(·) +
bi + aiTi
bi + Ji

G0(·)

where bi and b0 are concentration parameters, and ai and a0 are discount parame-

ters. The other notations are the same as in Equations (2.5) and (2.6). Similar to
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the HDP, the HPDP can be adapted to an infinite limit of finite mixture models

as a non-parametric prior.

2.3.5 PDP v.s. DP

The PDP is a generalisation of the DP. Both are probability distributions over

distributions over a measurable space. The PDP has similar properties to the DP,

e.g., mean, variance and covariance (see the proof of lemma 35 in [Buntine and

Hutter, 2010]).

Property 2.5. (Mean, Variance, and Covariance) If G ∼ PDP(a, b,H), for any

measurable set B,

E(G(B)) = H(B)

V(G(B)) =
1− a
1 + b

H(B)(1−H(B))

Cov(G(B), G(B′)) = −1− a
1 + b

H(B)H(B′) s.t. B′ ∩B = ∅ .

The stick-breaking construction and the Chinese restaurant process have nat-

ural generalisations for the PDP and the DP. With respect to applications, both

of them are used as non-parametric priors for parameters of mixture models. Nev-

ertheless, the PDP and the DP are different to a certain extent, since the intro-

duction of the discount parameter a in the PDP.

The PDP can reduce to the DP, if the discount parameter is set to 0. With

only the concentration parameter b, the DP has some properties such as slower

convergence of the sum
∑∞

k=1 pk to one, since the number of unique values taken

on by draws from G grows slowly at order O(b logN), where N is the total number

of draws. Actually, with referring to the posterior distribution (2.4) of the DP in

the CRP representation, we can have the expected number (K) of unique values

computed as follows.

E[K |N ] =
N∑
n=1

b

b+ n− 1
∈ O(b logN).

If 0 < a < 1, the PDP behaves according to a “power-law” [Pitman, 2002;

Teh, 2006b; Goldwater et al., 2006; Teh and Jordan, 2010], which is in contrast

to the logarithmic growth for the Dirichlet Process. The “power-law” behaviour

can be observed from either the stick-breaking construction or the CRP repre-

sentation for the PDP. As discussed by Teh and Jordan [2010], the stick-breaking
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Figure 2.4: The graphical representation of the CPDP. ρi is the weight on the

directed edge between Hi and G.

construction in Theorem 2.3 shows that the expectation of pk is of order O(k−1/a)

if 0 < a < 1, which indicates the partition size decays according to a “power-

law”. For the DP, the expectation of pk (see Theorem 2.2) is of order O
(
( b

1+b
)k
)
,

which decreases exponentially in k.

A similar phenomenon can also be observed from the CRP representation of

the PDP, in which the proportion of tables withN customers scales asO(N−(a+1)),

and the total number of tables scales as O(Na). Involving the discount parameter

causes the tail of a distribution drawn from the PDP to be much longer than

that drawn from the DP, since there will be a large number of tables with small

number of customers, which corresponds to a “power-law” that exists in natu-

ral language [Goldwater et al., 2006]. The “power-law” behaviour of the PDP

makes it more suitable than the DP for many applications, especially for natural

language processing.

2.4 Compound Poisson-Dirichlet Process

As discussed in Section 2.3, the traditional PDP only has one base measure. The

expectation of probability distributions drawn from a PDP is the base mea-

sure. The variance between those random distributions and the base measure

is controlled jointly by the discount and the concentration parameters. However,

in modelling problems, such as statistical language model domain adaption [Wood

and Teh, 2009] and topic evolutionary analysis [Zhang et al., 2010], it is required to

share knowledge (i.e., statistical information) across different domains or among

data that impose, for instance, a sequential time dependence. Therefore, it is of

great interest to develop a new integrated non-parametric Bayesian method that

can adapt or borrow knowledge from different domains to handle more complex

data relations.

Although we can linearly combine a set of PDPs to deal with knowledge adap-
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Figure 2.5: A directed acyclic graph (DAG). Each node can be associated with a

random probability distribution drawn from a CPDP.

tations, like those in [Ren et al., 2008; Pruteanu-Malinici et al., 2010], another

approach is to directly extend the PDP without loosing the generality by replac-

ing the single base measure with an admixture of multiple base measures defined

on the same measurable space, as shown in Figure 2.4. I call this method the

compound Poisson-Dirichlet process (CPDP). The mixture weights associating

with the base measures are normally summed to one to make them probabilistic.

Definition 2.5. (the compound Poisson-Dirichlet process) Let 0 ≤ a < 1 be the

discount parameter, b > −a be the concentration parameter, {H1, H2, . . . , HI} be

a set of base measures over a measurable space (X ,B), each of which is indexed

by i, and ρi be the mixture weight corresponds to Hi, s.t.
∑I

i=1 ρi = 1, as shown

in Figure 2.4, the compound Poisson-Dirichlet process is

G ∼ CPDP

(
a, b,

I∑
i=1

ρiHi

)
.

Clearly, Definition 2.5 shows that the CPDP can be understood as a multiple-

base-measure generalisation of the PDP. It can easily be adapted to an arbi-

trary directed acyclic graph (DAG), as shown in Figure 2.5, where each node

in the DAG is associated with a random probability distribution drawn from a

CPDP. The CPDP takes as a base measure the admixture of random distribu-

tions associating with its parent nodes. This forms a network of CPDPs, called

the graphical PDP, or the graphical Pitman-Yor process [Wood and Teh, 2009].

Definition 2.6. (The graphical Poisson-Dirichlet process) Let G denote a DAG

that composes of nodes indexed by integers 1, · · · , J . Each node j in G is associ-

ated with a random probability distribution Gj drawn from a CPDP. The directed
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edges are indicated by (i, j) for i ∈ Pa(j), where Pa(j) is the set of parent nodes

of j. Let ρi,j be the mixture weight on each edge (i, j), s.t.
∑

i∈Pa(j)
ρi,j = 1. The

graphical PDP is

Gj ∼ CPDP

aj, bj, ∑
i∈Pa(j)

ρi,jGi

 . (2.11)

For example, in Figure 2.5, G2 can be drawn from a CPDP with a mixture of

G1 and G8, and G7 with a mixture of G1, G4 and G8. Note, when |Pa(j)| = 1,

then the single hyper-parameter ρi,j is equal to one, so the sum degenerates to Gi,

thus the CPDP defined on one node reduces to the PDP. The mixture weights ρj
can be modelled as ρj ∼ Dir|Pa(j)|(%), where % is a Dirichlet parameter, whose

dimensionality is |Pa(j)|. Obviously, the CPDP inherits most of the properties

of the PDP and can be embedded not only in hierarchical structures but also in

large networks with arbitrary structures, such as a DAG. Consequently, one can

no longer commit to a single base measure, so there is more flexibility of modelling

complex data, for example, the adaptor grammar [Johnson et al., 2007] in the

context of probabilistic context-free grammars.

2.4.1 CPDP via the Stick-breaking Construction

Developing a stick-breaking construction for the CPDP provides a concrete rep-

resentation of draws from the CPDP, and it provides insight into the sharing of

atoms drawn from multiple base measures with probabilities proportional to the

mixture weights.

The generation of stick-breaking weights (pk)
∞
k=1 is the same as that in the

PDP stick-breaking construction, see Theorem 2.3. The problem is now how

to generate random variables (X∗k)∞k=1 from base measure(s). In the PDP stick-

breaking construction, all X∗k ’s are drawn from a single base measure. However,

there are multiple base measures that are linearly combined as one measure in

the CPDP. Therefore, to generate a X∗k , we need to decide exactly from which

base measure this X∗k is drawn. Thus the core difference between the CPDP and

the PDP is the different way of drawing (X∗k)∞k=1.

According to Definition (2.5), the base measure for drawing a probability dis-

tribution G from a CPDP is the mixture of I base measures H1, H2, · · · , HI . Since

the sum of the mixture weights is equal to one,
∑I

i=1 ρi = 1, we can treat

ρ = (ρ1, ρ2, · · · , ρI) as a probability vector, a parameter of a multinomial dis-

tribution, and then samples drawn from this multinomial distribution can be
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used to decide which base measure a X∗k is drawn from. Therefore, the probabil-

ity of drawing a X∗k from a specific base measure Hi could be proportional to the

mixture weight ρi, then the stick-breaking construction which we derive now is

straightforward.

Let φk be a random variable distributed according to a multinomial distribu-

tion with parameter ρ, and attached to X∗k , then (X∗k)∞k=1 are generated as:

φk |ρ ∼ Discrete(ρ)

X∗k |φk, H1, H2, · · · , HI ∼ Hφk

If |Pa(j)| = 1, as discussed before, the above procedure reduces to directly sam-

pling X∗k from a single base distribution. Moreover, the support of each G is

contained within the support of the mixture of all its base measures.

If the discount parameter is set to zero, the CPDP reduces to the compound

DP, and the graphical PDP reduces to the graphical DP. There exists a stick-

breaking construction for the graphical DP, such as the one elaborated in [Zhang

et al., 2010]. The admixture of base measures can be done through the admixture

of stick-breaking weights. The stick-breaking representation for the Evolutionary

HDP proposed by Zhang et al. [2010] deals with two base measures that are

random distributions drawn from a DP. It can be generalised to handle multiple

base distributions, say J base distributions as follows.

Let Gj, j ∈ J , be a probability distribution drawn from a DP according to

Theorem 2.2, and G be a probability distribution drawn from DP(α,
∑J

j=1 ρjGj),

then the corresponding stick-breaking construction is

Gj =
∞∑
k=1

p′j,kδX∗k for j = 1, · · · , J

p ∼ DP

(
α,

J∑
j=1

ρjp
′
j

)
s.t.

J∑
j=1

ρj = 1

G =
∞∑
k=1

pkδX∗k .

Zhang et al. [2010] have given a Gibbs sampling based on this construction. Note

we can also make Gj to be drawn from a compound DP.

2.4.2 CPDP via Chinese Restaurant Process

Recall the CRP representations for the DP, the HDP, and the PDP. The CPDP

can also be represented by a Chinese restaurant metaphor as follows. Draws
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x = (x1, x2, · · · , xN) from G correspond to customers, dishes served at tables are

draws (X∗ks) from the mixture base measure
∑I

i=1 ρiHi. Let n∗k be the number

of customers eating X∗k . If all the base measures are non-atomic, after G being

marginalised out, the conditional of xN+1 can be derived by slightly modifying

Equation (2.8) as

p (xN+1 |x, a, b,ρ, H1, H2, · · · , HI)

=
K∑
k=1

n∗k − a
N + b

δX∗k (·) +
a×K + b

N + b

(
I∑
i=1

ρiHi(·)

)
(2.12)

where δX∗k is the probability mass at X∗k and K is the number of dishes served at

all tables.

Similar to the PDP, when all the base measures are discrete, and all probabil-

ities are finite, Equation (2.12) must be modified since draws from the mixture of

base measures can be repeated. With the same notations used in Equation (2.9)

and (2.10), we have

p (xN+1 |x,m, t∗, a, b,ρ, H1, H2, · · · , HI)

=
K∑
k=1

t∗k∑
j=1

mk,j − a
N + b

δX∗k (·) +
a× T + b

N + b

(
I∑
i=1

ρiHi(·)

)
(2.13)

=
K∑
k=1

n∗k − a ∗ t∗k
N + b

δX∗k (·) +
a× T + b

N + b

(
I∑
i=1

ρiHi(·)

)
(2.14)

In the Chinese restaurant metaphor, customers choose a dish by sitting at

a table. If a customer chooses to sit at an unoccupied table, a new dish should

be sampled from the base measure. In the CPDP, the number of base measures

could be more than one, so we need to decide from which base measure a dish

is sampled. Since the base measure is an admixture, and the sum of the mixture

weights is equal to one, it can be achieved by first choosing a base measure Hi

with probability proportional to ρi, then sampling a dish from Hi. This procedure

is also known as multi-floor Chinese restaurant franchise [Wood and Teh, 2009].

Specifically, in the CRP metaphor for the CPDP, a restaurant corresponding

to G has I menus, each of which is generated from Hi. Tables are clustered and

allocated to different floors according to dishes served by them. The number of

floors is equal to the number of menus. If a table serves a dish that is drawn from

a menu i, then this table will be allocated to the ith floor. Arriving at a multi-floor

restaurant, a customer can choose to sit either at an occupied table in a floor or at

an unoccupied table. If the customer chooses to sit at an unoccupied table, a dish
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Figure 2.6: A multi-floor CRP representation for a CPDP with three base mea-

sures. The outer rectangle indicates a restaurant, the inter rectangles with dotted

lines are floors, circles are tables, xn’s are customers, and X∗k ’s are dishes.

is then ordered from any one of the I menus. The probability of ordering a dish

from menu i is proportional to ρi. If the ordered dish is from menu i, the newly

created table will then be allocated in the ith floor. Figure 2.6 shows a multi-floor

Chinese restaurant metaphor for a CPDP with three base measures. It has three

floors that correspond to the three base measures, nine occupied tables, and 20

customers. In this CRP representation, each table could be associated with a

latent variable, named menu indicator (shown as stars with different colors in

Figure 2.6), that indicates from which menu the dish on the table is ordered. All

the menu indicators can be taken as i.i.d. draws from a multinomial distribution

with parameter ρ, and they cluster tables into I number of floors. We can consider

putting a prior on ρ, such as a Dirichlet distribution. I will show how to introduce

a Dirichlet distribution as a prior on ρ in Section 3.6.

2.4.3 CPDP v.s. Other Related Models

The CPDP is different in several perspectives from the related models, such as

the dynamic HDP [Ren et al., 2008] and the Pachinko allocation model (PAM)

[Li and McCallum, 2006].

The dynamic HDP (DHDP), see Section 2.2.3, shares the statistical informa-

tion (e.g., atoms) across sequential data (e.g., music) by linearly combining two

probability distributions. In contrast, the CPDP combines several base distribu-



36 CHAPTER 2. DIRICHLET NON-PARAMETRIC FAMILY

tions to form a mixture base for the PDP, before drawing samples. In this way,

the CPDP could propagate shared knowledge through, for example, an arbitrary

DAG structure where each node has at least one parent. Combining multiple

base distributions together means sharing knowledge across different domains, or

statistical dependencies among streamed data. Clearly, the former is a mixture,

and the latter is an admixture.

The DAG structure to which the CPDP can be inserted is flexible such that

it can be a hierarchy, or an arbitrary DAG with cross-connected edges. It is

worth pointing out the Pachinko allocation model (PAM) proposed by Li and

McCallum [2006] and its extensions [Li et al., 2007; Mimno et al., 2007]. The

PAM is a DAG-structured mixture model for modelling topic correlations. It

consists of a DAG, where each interior node is a Dirichlet distribution over its

child nodes. The Dirichlet distribution has the same dimension as the number of

child nodes. It can be seen that directed edges in its DAG indicate that parents

are Dirichlet distributions over the corresponding linked children. Indeed, the

DAG in PAM partitions the space to different parts (i.e., the whole topic space

to subtopic spaces). However, in the DAG structure with the CPDP’s, each node

is associated with a random probability distribution drawn from a CPDP. The

directed edges show how one node can be generated from the admixture of the

linked parents via a stochastic process.

2.5 Summary

In this chapter, I have discussed the Dirichlet distribution and the Dirichlet re-

lated non-parametric Bayesian methods that include the Dirichlet process, the

two-parameter Poisson-Dirichlet process and their hierarchical extensions. I also

discussed a new class of non-parametric methods, named the compound Poisson-

Dirichlet processes that can handle multiple input distributions. The correspond-

ing stick-breaking construction and Chinese restaurant process representation

were presented. All of these provide a foundation for models and algorithms pre-

sented in Chapters 3 to 7.



Chapter 3

Gibbs Sampling for the PDPs

In this chapter, I will discuss computational aspects of doing inference for non-

parametric Bayesian models based on the Poisson-Dirichlet process that is an

important non-parametric method in statistical machine learning. There are var-

ious mathematical representations available for PDPs, which can be combined in

different ways to build a range of inference algorithms, e.g., Neal [2000]; Ishwaran

and James [2001]; Blei and Jordan [2005]; Ren et al. [2008]; Zhang et al. [2010];

Ren et al. [2010]. Here I will focus on Gibbs sampling algorithms for sampling

from posterior distributions of the PDPs, based on the Chinese restaurant process

(CRP) representation, particularly in a finite state space. In subsequent sections,

I will discuss three Gibbs sampling algorithms for the PDP. They are respectively

• Teh’s sampling for seating arrangement sampler (SSA) [Teh, 2006a] (Sec-

tion 3.2);

• Collapsed multiplicity Gibbs sampler (CMGS, Section 3.3);

• Blocked table indicator Gibbs sampler (BTIGS, Section 3.4).

After comparing these three samplers in Section 3.5, I will present two Gibbs

sampling techniques for the CPDPs based on the CMGS and the BTIGS in

Section 3.6.

3.1 Joint Marginalized Likelihood

In this section I discuss the joint marginalised likelihood over a specific seat-

ing arrangement of customers in a restaurant. It will help in understanding the

sampling algorithms that will be discussed in Sections 3.2, 3.3 and 3.4.

37
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Figure 3.1: A specific seating arrangement in a Chinese restaurant. The customer-

dish assignment xn = X∗k indicates a customer xn eats the dish X∗k , the customer-

table assignment sn = ti indicates xn sits at table ti, and the table-dish assignment

ti = X∗k indicates table ti serves X∗k .

In the Chinese restaurant metaphor, after all customers have been seated,

each restaurant has a seating arrangement of those customers. Figure 3.1 shows

a specific seating arrangement in a restaurant that has twelve customers, each

of which sits at a table ti. There are four occupied tables, each of which serves

a dish X∗k . We can see that a seating arrangement includes the total number of

customers, the total number of occupied tables, the customer-table assignments

(i.e., the table identities of the customers (sn = ti)), the customer-dish assign-

ments (xn = X∗k), and the table-dish assignments (ti = X∗k). Actually, given

the customer-table assignments, the table-dish assignments can be reconstructed

from the customer-dish assignments, and vice versa. For example, in Figure 3.1,

x1 = X∗1 and s1 = t1, so t1 = X∗1 . Therefore, we only need to keep either the

customer-table and customer-dish assignments or the customer-table and table-

dish assignments.

Now the joint marginal likelihood over a particular seating arrangement can

be computed as follows. Let x = (x1, x2, . . . , xN) be a sequence of customers;

K the total number of dishes in a restaurant where each dish is denoted by

X∗k ; t∗k the number of tables serving X∗k ; n∗k the number of customers eating X∗k ;

mk,ti the number of customers sitting at table ti serving X∗k ; T the total number

of occupied tables; and N the total number of customers. The customer-table

assignments are indicated by s = (s1, s2, . . . , sN). Each entry sn of s corresponds
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to the table assignment of customer xn, and takes values on {t1, t2, . . . , tT}. The

seating arrangement can now be interpreted mathematically as

xn ∈ {X∗1 , X∗2 , . . . , X∗K} for n ∈ {1, 2, . . . , N}
sn ∈ {t1, t2, . . . , tT} for n ∈ {1, 2, . . . , N}

mk,ti =
N∑
n=1

1xn=X∗k
1sn=ti n∗k =

N∑
n=1

1xn=X∗k

t∗k =
T∑
i=1

1ti=X∗k =
T∑
i=1

1mk,ti>0 T =
K∑
k=1

t∗k

N =
T∑
i=1

mk,ti =
K∑
k=1

n∗k .

The joint marginal likelihood over a specific seating arrangement (i.e., x and

s) can be derived by multiplying up the conditional probabilities, given by Equa-

tion (2.9) in Chapter 2, for all assignments of customers to tables. It has the

following form

p(x, s | a, b,H) =
(b|a)T
(b)N

K∏
k=1

H(X∗k)t
∗
k

t∗k∏
j=1

(1− a)mk,ζj−1 , (3.1)

where ζj takes values on {t1, t2, . . . , tT}, H is a probability distribution over dishes,

(x)N is given by (x|1)N , and (x|y)N denotes the Pochhammer symbol with incre-

ment y, it is defined as

(x|y)N = x(x+ y) . . . (x+ (N − 1)y) =

xN if y = 0

yN × Γ(x/y+N)
Γ(x/y)

if y > 0 ,
(3.2)

where Γ(·) denotes the standard Gamma function.

This joint marginal likelihood function will be used as the basis for the deriva-

tion of Gibbs sampling algorithms discussed in Sections 3.2, 3.3 and 3.4. In partic-

ular, I will show how it can be used to compute equations in Section 3.3. Notations

used in this section will be reused in subsequent sections.

3.2 Teh’s Sampling for Seating Arrangement

The sampling for seating arrangement algorithm [Teh, 2006a], denoted by SSA,

returns samples from the posterior distribution over the seating arrangement. It
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Algorithm 1 Sampling for seating arrangements algorithm

1. for each customer xn sitting at a table that serves a dish X∗k do

2. Sample to find the table from which xn will be removed, i.e., suppose for

each dish, X∗k , there are a total of t∗k tables serving X∗k , each of which

is indexed by ζj (j ∈ 1, 2, . . . , t∗k) and has mk,ζj customers. Then, the

probability of removing xn from the j-th of these tables is mk,ζj/n
∗
k.

3. Decrement the corresponding customer count mk,ζj by one. If the count

goes down to zero, the table becomes unoccupied, then decrease the table

count t∗k by one.

4. Reinsert the customer back to the restaurant using the standard CRP

sampling probabilities computed by Equation (2.9) which are propor-

tional to

a.) mk,ζj − a: seat xn at ζj
th occupied table in the restaurant. The

dish served on this table is then assigned to xn. Update related counts.

b.) b+ aT : seat xn at a new table. A dish needs to be sampled from

H. Let it be denoted by X∗k′ . Then, assign the dish to the new table and

the customer xn. Increase t∗k′ by one, and initialise mk′,ζt∗
k′

to one.

5. end for

only keeps track of the number of customers sitting around each table (i.e., mk,ti),

rather than explicitly recording all customer-table assignments1.

From the joint marginalised likelihood over a seating arrangement, Equa-

tion (3.1), we can easily observe that given the dishes all customers eat, the table

assignments have no effect on the joint marginalised likelihood of the data. There-

fore, at every restaurant, the SSA algorithm only keeps track of the number of

tables t∗k, and all the customer counts mk,ζ1 , mk,ζ2 , . . . , mk,ζt∗
k

at tables for each

X∗k , where ζj is defined in Equation (3.1). The assignments of individual cus-

tomers to individual tables, denoted by s, are not recorded but rather recon-

structed randomly during sampling. This can be done because the assignments s

do not appear explicitly in either Equation (2.9) or Equation (3.1), rather appear

indirectly via the customer count at each table. Thus they can be uniformly sam-

pled as long as the counting constraints are maintained, i.e., n∗k ≥ t∗k. The SSA

algorithm performs cycles as shown in Algorithm 1. We should keep in mind that

1Althoughmk,ζj in Equation (3.1) can be reconstructed from the customer-table assignments,

and recording these assignments could lead to a better mixing of a Markov chain, it may still

require a large storage space in cases, such as a topic model that needs to be trained on a large

number of documents.
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SSA requires a dynamic storage for customer counts at all tables. Being placed in

a hierarchical context where deletion and creation of tables lead us to recursively

carry out the removing and reinserting operations up through all the nodes in

the hierarchy.

The basic idea of SSA has been embedded in samplers for more complex

models, such as the hierarchical LDA [Blei et al., 2010], the HDP variant of LDA

[Teh et al., 2006], the doubly nested n-gram model [Mochihashi and Sumita,

2008] and the side-by-side n-gram models for language adaptation [Wood and

Teh, 2009]. However, the basic idea of these algorithms remains the same, which

is to move the customer currently being sampled up to the end of the customer

sequence so that the sequential formula of Equation (2.9) can be used.

3.3 Collapsed Multiplicity Gibbs Sampler

In the SSA algorithm, the customer count at each table needs to be dynamically

stored in memory. It could still encounter a storage problem if the total number

of tables at a restaurant becomes large, which is possible if the concentration

parameter b is set to a large value, for example in a language model that needs to

be trained on very large corpora. Here I introduce a collapsed version of the SSA

that marginalises out all the possible seating arrangements so that the storage

of the customer counts mk,ζ1 , mk,ζ2 , . . . , mk,ζt∗
k

for each dish X∗k is not needed. It

is based on the multiplicity representation of tables in the CRP interpretation

for the PDP [Buntine and Hutter, 2010]. I call it Collapsed Multiplicity Gibbs

Sampler (CMGS).

In the multiplicity representation, two observations that need to be stored

are the customer count n∗k and the table count t∗k for each dish X∗k , as shown in

Figure 3.2. This representation is no longer sequential, since the actual identity

of the table at which a customer sits cannot be reconstructed from n∗k’s and

t∗k’s, and neither can one tell whether a dish being served comes from the same

table or not (see Section 2.3.3). Therefore, the CRP based sequential sampling

methods using Equation (2.9) cannot be used. Nevertheless, in order to describe

this representation, the terminologies, such as restaurant, table, customer, dish,

will still be used.

Definition 3.1. (Multiplicity) In the CRP representation for a PDP, assume the

base distribution H is discrete, which means the probability of a same dish being

served by multiple tables is positive with probability one. The number of tables
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Figure 3.2: A multiplicity representation for the PDP. The empty circles are

unoccupied tables, the others are occupied tables. There are seven customers

who arrive in a restaurant sequentially. The statistics kept are n∗k’s and t∗k’s. The

arrival of each customer will increase either n∗k or both, which depends on the

way in which the customers choose a table to sit at.
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t∗k serving the same dish X∗k is defined as the multiplicity of the tables. In general,

the multiplicity is the frequency of a distinct value drawn from the base measure

appearing in the data.

Notice that given the seating arrangement, the conditional probability or the

predictive probability, Equation (2.10), only depends on the number of customers

eating dish X∗k , n∗k, and the number of tables serving X∗k , i.e., the multiplicity

t∗k. With all the customer counts m1,1:t∗1
, m2,1:t∗2

, . . . , mK,1:t∗K
being eliminated

and just the total counts being kept, the joint posterior distribution of cus-

tomers2 x = (x1, x2, . . . , xN) and multiplicities t∗ = (t∗1, t
∗
2, . . . , t

∗
K) is derived

by marginalising out all the possible seating arrangements3 with Equation (3.1)

[Teh, 2006a; Buntine and Hutter, 2010; Du et al., 2010b]

p(x, t∗ | a, b,H) =
(b|a)T
(b)N

K∏
k=1

H(X∗k)t
∗
kS

n∗k
t∗k,a

, (3.3)

where SNM,a is the generalised Stirling number [Hsu and Shiue, 1998] given by the

linear recursion [Buntine and Hutter, 2010; Teh, 2006a]

SN0,a = δ0,N

SNM,a = 0 for M > N

SN+1
M,a = SNM−1,a + (N−Ma)SNM,a for M ≤ N . (3.4)

As a consequence, it follows that SNN,a = 1 and SN1,a = Γ(N−a)
Γ(1−a)

. The major hur-

dle for using the joint distribution (3.3) is to compute the Stirling numbers. To

avoid the intensive computation of order O(NM), we can tabulate or cache the

Stirling numbers for the required discount parameter a. In addition, these num-

bers rapidly become very large so computation needs to be done in a log space

using a logarithmic addition to prevent overflow. Therefore, Equation (3.4) is

computed in log space as

logSN+1
M,a = logSNM,a + log

(
exp

(
logSNM−1,a − logSNM,a

)
+ (N −M a)

)
.

The log() and exp() functions make the evaluation fairly slow. When keeping a

fixed, we can overcome this problem by placing a maximum value on M , say

2Note customers x = (x1, x2, . . . , xN ) are explicitly represented by the customer counts

(n∗1, n
∗
2, . . . , n

∗
K) in Equation (3.3).

3The last product in Equation (3.1) is changed to a Stirling number in Equation (3.3) by

marginalising out all the specific seating arrangements [see Teh, 2006a, Equation (26)].
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Algorithm 2 Collapsed multiplicity Gibbs sampling algorithm

1. for each customer xn eating a dish X∗k do

2. Remove xn from the restaurant by decreasing n∗k, subject to n∗k ≥ t∗k and

n∗k = 0 iff t∗k = 0. If currently, n∗k = t∗k, then t∗k is decreased by one.

3. Conditioned on the current t∗k, sample for xn a new dish X∗k′ according

to Equation (3.3), and add it back to the restaurant by increasing n∗k′ . if

t∗k′ = 0, then increase t∗k′ by one.

4. Conditioned on the new dish X∗k′ , sample t∗k′ according to Equation (3.3),

where t∗k′ should be in the interval [1, n∗k′ ].

5. end for

100 or 1000 to limit the cache4. Furthermore, the computation with the two

functions could suffer from fixed precision truncation error, especially for large

M . In practice, the type of Stirling numbers is normally set to Double in the

computation. In order to save space without seriously losing precision, we could

instead save the final table in Float.

Equation (3.3) gives the joint posterior distribution of two random variables,

x and t, thus a simple two-stage Gibbs sampling algorithm [Robert and Casella,

2005] can be adapted to sample each variable interchangeably conditioned on each

other. Before presenting the two-stage Gibbs sampler in detail, I first discuss some

constraints on the two counts n∗k and t∗k. Intuitively, the number of occupied tables

in a restaurant should be less than or equal to the total number of customers

currently being seated; and the table count is equal to zero if and only if the

customer count is zero. These constraints apply to n∗k and t∗k. Specifically, the

number of customers eating a dish X∗k should be greater than or equal to t∗k, and

if t∗k = 0, n∗k must be zero, i.e.,t∗k = 0 if and only if n∗k = 0

n∗k ≥ t∗k .
(3.5)

When removing and adding a customer, we must always bear in mind these

constraints.

Now I present the two-stage Gibbs sampler in Algorithm 2. We can see that

the CRP based Gibbs sampling algorithms, like SSA, are no longer applicable,

4The value of M depends on different applications. For instance, in the experiments of the

segmented topic model in Chapter 5, I set M to the maximum number of words in segments. In

the sequential LDA model, see Chapter 6, I set M to the double of this maximum number.
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Figure 3.3: An example of multi-level hierarchical PDP
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Figure 3.4: An hierarchical CRP representation for a multi-level hierarchical

PDP. There are two types of customers in each restaurant, xj,n’s who arrive by

themselves and tj+1,m’s who are sent by the corresponding child restaurant.

since the underlying sequence of customer-table assignments are lost due to Equa-

tion (3.3). I will empirically compare this CMGS with SSA in Section 3.5.

The joint posterior distribution given by Equation (3.3) can be adapted hi-

erarchically to sample from the posterior of the PDP embedded in a multi-level

hierarchy, see for instance Figure 3.3. The base distribution at level j is now recur-

sively drawn from a PDP at level j−1. Then recursively applying Equation (3.3),

we can derive the following joint posterior distribution

p(x1:J , t
∗
1:J |a1:J , b1:J , H0)

=
K∏
k

H0(X∗k)t
∗
1,k

J∏
j=1

(bj|aj)Tj
(bj)Nj+Tj+1

K∏
k=1

S
nj,k+t∗j+1,k

t∗j,k,aj
, (3.6)

where H0 is the base distribution for the highest level PDP, nj,k is the number of

customers that arrive by themselves and eat X∗k , Nj =
∑K

k=1 nj,k. The recursion is

done according to Figure 3.4, a hierarchical CRP representation for a multi-level

hierarchical PDP. In the figure, rectangles represent the Chinese restaurants that

are indexed by j, circles are tables (tj,m’s) and customers are xj,n’s. tj,m = X∗k
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indicates a dish X∗k is served at table tj,m. Red arrows indicate tables in the

child restaurant are sent as proxy customers to its parent restaurant, so the total

number of customers in restaurant j is Nj + Tj+1. This shows how the last two

products in Equation (3.6) are derived.

3.4 Blocked Table Indicator Gibbs Sampler

In addition to SSA and CMGS algorithms, another promising sampling algorithm

is a block Gibbs sampling algorithm based on an auxiliary latent variable, table

indicator, which is introduced by Chen, Du and Buntine in [Chen et al., 2011]. I

call the new algorithm the Blocked Table Indicator Gibbs Sampler (BTIGS). It is

based on the table indicator representation built on top of the Chinese restaurant

metaphor.

Definition 3.2. (Table indicator) The table indicator u associated with each

customer x is an auxiliary latent variable that indicates whether x takes the

responsibility of opening (or contributing) a new table or not. If x opens a new

table, i.e., the customer choosing to sit at an unoccupied table, u = 1, otherwise,

u = 0.

This representation could compensate for the information loss that might be

caused by CMGS. As discussed in Section 3.3, customer-table assignments cannot

be reconstructed from the two observations (n∗k and t∗k) kept by CMGS. Losing

the assignment information may result in bad mixing of the Markov chain in the

sampling stage. However, recording all customer-table assignments requires large

storage space. In order to reduce the information loss and the large space require-

ment, the table indictor representation records table contributions of customers,

rather than the customer-table assignments.

The basic idea of the table indicator representation is that a table indica-

tor variable is introduced to dynamically record the table contribution of each

customer. If a customer xn takes the responsibility of opening a new table, let

un = 1; otherwise un = 0, which indicates xn has chosen to share a dish with

other customers. Figure 3.5 shows how the table indicator representation works

with seven customers in a restaurant. There are only three customers that have

opened a new table. They are x1, x2 and x4 respectively. Their indicators are

set to 1. In this sense, the table indicator keeps track of table contribution of

each customer, rather than the table identity. The table multiplicity t∗k defined in
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CMGS can be constructed from the indicators as

t∗k =
N∑
n=1

un1xn=X∗k
. (3.7)

For example, in Figure 3.5, for dish X∗1 , the table count t∗1 = u1 + u3 + u4 = 2;

for dish X∗3 , t∗3 = u2 + u5 + u6 + u7 = 1. This construction implies that the

statistics need to be kept for the table indicator representation can be the same

as those kept in the multiplicity representation. Note given n∗k’s and t∗k’s, we can

compute the probability that a customer opened a table.

Conditioned on customer xn eating dish X∗k and given nk and tk, the probabil-

ity of this customer contributing a table is proportional to
t∗k
nk

. For instance, the

probability of customer x3 contributing a table is 2
3

in Figure 3.5. Indeed, there

is a uniformity in the table indicator assignment. Therefore, table indicators can

be randomly assigned in order to recover the table contributions, and thus the

explicitly recording table indicators for all the customers is unnecessary.

The posterior distribution of the PDP from the table indicator representation

can now be derived as follows. Let t∗ = (t∗1, t
∗
2, . . . , t

∗
K) be a vector of the table

multiplicities, u = (u1, u2, . . . , uN) be a vector of latent table indicators, and

x = (x1, x2, . . . , xN) be a sequence of customers that are explicitly represented

by per dish customer counts n∗ks. It is easy to see from Equation (3.7) together

with Figure 3.5 that a specific table indicator assignment corresponds to a unique

multiplicity representation, but a multiplicity representation gives
∏

k

n∗k!

t∗k!(n∗k−t
∗
k)!

possible table indicator assignments. This choose term says any t∗k of the n∗k cus-

tomers are equally likely to contribute a table. As a consequence, Equation (3.3)

can be computed in terms of the joint posterior distribution of x and u as

p(x, t∗ | a, b,H) =

(∏
k

n∗k!

t∗k!(n
∗
k − t∗k)!

)
p(x,u | a, b,H) . (3.8)

This formula lets us convert the multiplicity representation (x, t∗) to the ta-

ble indicator representation (x,u). Consequently, modifying the joint posterior,

Equation (3.3), along with Equation (3.8), we can write down the joint posterior

distribution of x and u as

p(x,u | a, b,H) =
(b|a)T
(b)N

K∏
k=1

(
H(X∗k)t

∗
kS

n∗k
t∗k,a

t∗k!(n
∗
k − t∗k)!
n∗k!

)
. (3.9)

It can be observed that this joint posterior distribution is exchangeable in the

pairs (xn, un), since the posterior and related statistics used are all sums over
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Figure 3.5: A table indicator representation of the PDP. The empty circles are

unoccupied tables, the others are occupied tables. There are seven customers

who arrive in a restaurant sequentially. Actually, only three of them have the

responsibility of opening a new table.
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Algorithm 3 Blocked table indicator Gibbs sampling algorithm

1. for each customer xn eating a dish X∗k do

2. Sample un for xn according to Equations (3.10) to remove xn.

3. Jointly sample xn and un based on the joint posterior, Equation (3.9)

4. Update both n∗k and t∗k based on the sampled values of xn and un respec-

tively.

5. end for

data [see Chen et al., 2011, Corollary 1]. Thus, different sampling orders and

table assignment s can yield the same indicator assignment u.

To sample from the posterior, I introduce an adapted version (i.e., BTIGS) of

the block Gibbs sampling algorithm proposed in [Chen et al., 2011]. It is shown

in Algorithm 3. BTIGS is different to both CMGS and its variants proposed by

Buntine et al. [2010]; Du et al. [2010b,a, 2012b], all of which adopt the two-stage

Gibbs sampling algorithm to interchangeably and iteratively sampling xn and

t∗k. Instead, BTIGS allows jointly sample xn and un by cancelation of terms in

Equation (3.9).

As I mentioned before, un is randomly assigned in the sampling procedure,

rather than dynamically stored. While removing a customer from a restaurant,

we need first to sample the value of un with following probabilities

p(un = 1 |xn = X∗k) =
t∗k
n∗k

p(un = 0 |xn = X∗k) =
n∗k − t∗k
n∗k

. (3.10)

It is interesting that the constraints put on the t∗k and n∗k discussed in CMGS (see

Section 3.3) are implicitly guaranteed by the two probabilities. For example, if

n∗k = t∗k and t∗k > 0, removing a customer xn = X∗k must cause t∗k to be decreased

by one. In this case, Equation (3.10) always has p(un = 1 |xn = X∗k) = 1 so that

removing a table is guaranteed. The only case to which a careful attention should

be paid is that a table cannot be removed for xn if t∗k = 1 and n∗k > t∗k. Therefore,

it should be assured that p(un = 1 |xn = k) = 0 and p(un = 0 |xn = k) = 1 in

the implementation of BTIGS.

3.5 Empirical Comparison of the Three Sam-

plers

All the three Gibbs sampling algorithms, i.e., SSA, CMGS, and BTIGS, can be

embedded into an hierarchical context. However, it is difficult in experiments to
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Table 3.1: Experiment parameter settings for comparing SSA, CMGS and BTIGS

Setting No. K a b

Setting No.1 50 0 10

Setting No.2 50 0 100

Setting No.3 50 0.5 100

Setting No.4 100 0 10

Setting No.5 100 0 100

Setting No.6 100 0.5 100

isolate the side effects in complex hierarchies, such as those caused by different

implementations, different hierarchical modelling methods and different hyper-

parameter settings or estimations. Therefore, in order to reduce the side effects

as much as we can, the three samplers are investigated in this section in a simply

controlled environment of multinomial sampling, since the use of plain PDP or

DP (i.e., the PDP/DP without a hierarchical structure) on a discrete domain

corresponds to multinomial sampling. In this way, we can do a precise quali-

tative comparison of these three samplers, which can further help explain their

comparative performance in a more complex hierarchical context [Chen et al.,

2011].

The goal of the following experiments is to compare the relative convergence

speed of the three samplers in order to quantify the improvement of CMGS and

BTIGS, compared with SSA. High precision of convergence is not a main concern

here, since high precision would typically not be achieved in our hierarchical

modelling context in which the DP and the PDP are normally used. Moreover,

within the simply controlled environment, we can repeat dozens of Gibbs runs

within a short time due to the fast computation. Therefore, the use of convergence

diagnostics [Cowles and Carlin, 1996] or related theory is not required in this

simple case.

In all the experiments, the discount parameter a and the concentration pa-

rameter b are fixed, the base distribution is uniform on a fixed dimension K,

denoted by UK . Table 3.1 shows six different parameter settings being used. For

each of these parameter settings, 20 independent Gibbs runs are made. For each

run, N samples are drawn from a single discrete probabilistic distribution µK
that is randomly sampled from the PDP as follows.

µK ∼ PDP(a, b,UK)

nk ∼ multinomial(µK , N) ,
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Figure 3.6: The plots of mean estimates of T for one of the 20 Gibbs runs (a) and

the standard deviation of the 20 mean estimates (b) with a = 0, b = 10, K = 50

and N = 500.
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Figure 3.7: The plots of mean estimates of T for one of the 20 Gibbs runs (a)

and the standard deviation of the 20 mean estimates (b) with a = 0.5, b = 10,

K = 50 and N = 500.

where N is set to 10K in all the experiments, and the sum of entries in the

counting vector nK is equal to N .

The basic quantity estimated during each Gibbs run is the total number of

tables T . For the six parameter settings, a rough determination is done for con-

vergence time required in milliseconds. Let C indicate the sampler’s convergence

time. A burn-in for each individual Gibbs sampling run is done for C
10

millisec-

onds. Different convergence times are used for the different parameter settings. For

K = 50, C = 1000ms, and for K = 100, C = 10000ms. Then the mean es-
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Figure 3.8: The relative standard deviations of T

timates of T from all major Gibbs cycles from burn-in up to the current time

are recorded. In addition, since there are 20 independent Gibbs runs, a sample

standard deviation of the 20 means is also recorded at corresponding cycles. The

time series of means for individual runs and the sample standard deviations allow

one to assess empirically how fast the Gibbs samplers are converging.

Figures 3.6 and 3.7 show examples of the time series of mean estimates of

the total table counts and the time series of standard deviations of the 20 means

with two different parameter settings. When a = 0, the PDP is indeed the DP. As

we can see from these figures, regardless of the PDP or the DP, the mean esti-

mates and standard deviations for BTIGS and CMGS become relatively stable

more quickly than those for SSA, especially for BTIGS. Besides, both BTIGS

and CMGS have smaller standard deviations than SSA, which indicates a faster

convergence.

In order to further assess the relative performance of the three algorithms,

the relative values of standard deviations are computed in ratios as

s.d.CMGS

s.d.CMGS + s.d.SSA

s.d.BTIGS
s.d.BTIGS + s.d.SSA

,
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which should be close to 0.5 if the two standard deviations are about equal. If the

ratio score is less than 0.5, say 0.25, it means the standard deviation for either

CMGS or BTIGS is about three times smaller than that for SSA, thus CMGS

and BTIGS converge faster. Otherwise, the standard deviation for the SSA is

smaller, which means SSA converges faster.

Figure 3.8 shows six plots for the six different parameter settings. Each plot

overlays 9 time series of the ratio scores of the standard deviations on the mean

estimates of T computed across 20 Gibbs runs for the 9 different data samples

nK . We can see that in the context where both the concentration parameter

and the discount parameter are fixed correctly, both CMGS and BTIGS are

significantly faster than SSA, and CMGS has perhaps half the standard deviation

of BTIGS. Moreover, the improvement of CMGS seems more pronounced with

the higher dimension.

3.6 Gibbs Sampling for the CPDP

In Section 3.5, I showed the superiority of CMGS and BTIGS over SSA in a

controlled environment of multinomial sampling. In this section, I will generalise

CMGS and BTIGS to do posterior inference for the CPDP in a discrete space,

where all probabilities are finite and discrete. For easy understanding, I will de-

scribe the two techniques in context of a DAG structure, i.e. Equation (2.11). Note

it is also worth pointing out that a SSA based sampling algorithm can be found

in [Wood and Teh, 2009], and Zhang et al. [2010] introduced a Gibbs sampling

algorithm based on the stick-breaking construction discussed in Section 2.4.1.

The challenge of doing Gibbs sampling over the posterior of CPDP is to

handle to multiple base measures. It is more complex than the PDP. In the

Chinese restaurant metaphor for the CPDP embedded in a DAG structure (i.e.,

the graphical PDP in Definition 2.6), all the restaurants (i.e., nodes in the DAG)

are linked to multiple parent restaurants. In each restaurant, dishes served in

different floors are drawn from different parent restaurants. The number of floors

is equal to the number of parents. Then, how can we decide from which parent a

particular dish is drawn? or how can we decide to which parent the newly opened

table is sent as a proxy customer?

Figure 3.9 shows an example of the CRP representation of the CPDP within

a DAG structure. There are three restaurants, labeled with 1, 2 and 8, that cor-

respond to three nodes in Figure 2.5, i.e., G1, G2 and G8 respectively. G1 is
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Figure 3.9: A CRP representation for a CPDP embedded in a simple DAG struc-

ture taken out from Figure 2.5. The red stars indicate that the dishes are drawn

from G1, and the green ones indicate that the dishes are drawn from G8.

drawn from a CPDP with the admixture of G2 and G8 as base distributions. To

demonstrate clearly the representation, I assume that all probability distributions

associated with root nodes (nodes with no parents) in Figure 2.5 are drawn from

the same CPDP with a single discrete base distribution H0. Thus, atoms (i.e.,

dishes in the global menu) drawn from H0 can be shared among all the nodes

(i.e., restaurants). Therefore, dishes, denoted by X∗k in Figure 3.9, with the same

subscripts but different colored stars are the same dish drawn from the global

menu. Different colors are just used to indicate these dishes are ordered through

different parent restaurants and served by tables located in different floors in

the restaurant. For example, X∗1 and X∗1 are the same dish, but ordered through

restaurant 1 and restaurant 8 respectively. As indicated by dotted arrows with dif-
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ferent colors, tables in different floors of restaurant 2 are sent as proxy customers

to either restaurant 1 or restaurant 8. For example, t2,2 is sent to restaurant 8,

because the dish it serves is drawn from G8.

Now, we are ready to modify CMGS and BTIGS algorithms to make them

applicable to the CPDP. First, I adapt the multiplicity representation of the PDP

to the CPDP. Refer to Equation (2.11), Gj is a random probability distribution

associated with node j, Pa(j) is a set of parent nodes of j, each of which is

indicated by Gi, (i, j) is the directed edge from node i to node j, and ρi,j is the

mixture weight on (i, j), s.t.
∑

i∈Pa(j)
ρi,j = 1.

Now, let n∗j,k be the count of customers eating X∗k at node j, which includes the

customers arriving by themselves and those sent by the child nodes of j (Cd(j)),

see Figure 3.9, and t∗j,k be the table multiplicity. Equation (3.3) can be modified

to yield the joint posterior of all customer counts nj and table multiplicities t∗j
for a CPDP at node j as

p(xj, t
∗
j | aj, bj, G1, G2, · · · , G|Pa(j)|) =

(bj|aj)Tj
(bj)Nj

K∏
k=1

S
n∗j,k
t∗j,k,aj

 ∑
i∈Pa(j)

ρi,jGi(X
∗
k)

t∗j,k

, (3.11)

where Tj =
∑K

k=1 t
∗
j,k and Nj =

∑K
k=1 n

∗
j,k. To expand the sum with multinomial

identity, t∗j,k can be decomposed into parts, s∗i,j,k’s, each of which indicates the

number of tables serving X∗k in the ith floor of restaurant j, s.t. s∗i,j,k ≥ 0. The

s∗i,j,k tables are sent to parent i as proxy customers. Thus, we have

t∗j,k =
∑

i∈Pa(j)

s∗i,j,k n∗j,k = nj,k +
∑

c∈Cd(j)

s∗j,c,k

n∗j,k ≥ t∗j,k t∗j,k = 0 iff n∗j,k = 0 ,

where nj,k is the number of customers arriving by themselves. For example, there

are 3 tables serving dish X∗3 in restaurant 2 in Figure 3.9, i.e., t∗3 = 3. Two of them

(t2,5 and t2,6) are sent to restaurant 1 and the left one (t2,7) is sent to restaurant

8. Thus, n∗1,3 = 2 + 2 = 4, and n∗8,3 = 4 + 1 = 5.

As a consequence, we can decide with this decomposition how many tables

serve a dish ordered from a specific parent. The problem of involving multiple

base measures can now be solved. The final joint posterior distribution of xj and
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s∗j (i.e., (s∗1,j,k, s
∗
2,j,k, . . . , s

∗
|Pa(j)|,j,k)) is derived as

p
(
xj, s

∗
j | aj, bj, G1, G2, · · · , G|Pa(j)|

)
=

(bj|aj)Tj
(bj)Nj

K∏
k=1

S
n∗j,k
t∗j,k,aj

C
t∗j,k
s∗j,k

∏
i∈Pa(j)

ρ
s∗i,j,k
i,j Gi(X

∗
k)s
∗
i,j,k (3.12)

where C
t∗j,k
s∗j,k

is a multinomial coefficient which is computed as

C
t∗j,k
s∗j,k

=
t∗j,k!∏

i∈Pa(j)
s∗i,j,k!

.

Indeed, Equation (3.12) can be treated as a generalisation of Equation (3.3). Re-

place the equations in Algorithm 2, we can derive the Gibbs sampling algorithm

for the CPDP.

Now, I generalise BTIGS for the CPDP. Unlike the table indicator represen-

tation for the PDP (see Section 3.4), given a multiplicity representation, there

are
∏K

k=1C
n∗j,k
s∗j,k,(n

∗
i,k−t

∗
j,k) choices of the table indicator configurations, where

C
n∗j,k
s∗j,k,(n

∗
j,k−t

∗
j,k) =

n∗j,k!(∏
i∈Pa(j)

s∗i,j,k!
)

(n∗j,k − t∗j,k)!
.

Therefore, the joinst posterior for the CPDP at node j based on the multiplic-

ity representation can be reconstructed from that based on the table indicator

representation as (similar to Equation (3.8))

p
(
xj, s

∗
j | aj, bj, G1, G2, · · · , G|Pa(j)|

)
=

(
K∏
k=1

C
n∗j,k
s∗j,k,(n

∗
j,k−t

∗
j,k)

)
p
(
xj, uj | aj, bj, G1, G2, · · · , G|Pa(j)|

)
, (3.13)

then, modifying Equation (3.12) with reference to Equation (3.13) gives the joint

posterior distribution of xj and table indicators uj as follows

p
(
xj, uj | aj, bj, G1, G2, · · · , G|Pa(j)|

)
=

(bj|aj)Tj
(bj)Nj

K∏
k=1

S
n∗j,k
t∗j,k,aj

C
t∗j,k
s∗j,k

C
n∗j,k
s∗j,k,(n

∗
j,k−t

∗
j,k)

∏
i∈Pa(j)

ρ
s∗i,j,k
i,j Gi(X

∗
k)s
∗
i,j,k

=
(bj|aj)Tj
(bj)Nj

K∏
k=1

S
n∗j,k
t∗j,k,aj

1

C
n∗j,k
t∗i,k

∏
i∈Pa(j)

ρ
s∗i,j,k
i,j Gi(X

∗
k)s
∗
i,j,k (3.14)



3.6. GIBBS SAMPLING FOR THE CPDP 57

Here the definition of table indicator for the CPDP is slightly different from

that for the PDP (i.e., Definition 3.2). For the CPDP embedded in a DAG,

there can be multiple parents for each node. Tables contributed by customers

at one node can be sent to different parents. Thus, the values that the table

indicator can take on should be the indices of all the parent nodes if a table is

created. Otherwise, the table indicator is zero. For example, in Figure 2.5, if a

customer contributes a new table at node G5 and the new table is sent to node

G7 as a proxy customer, then the table indicator for this customer is u = 7. Note

although I just elaborated how table indicator works for the CPDP, dynamically

recording all the table indicators is not required in practice. Like BTIGS, we can

randomly assign table indictors by sampling.

While adapting Algorithm 3 for doing sampling for the CPDP, we should pay

attention to Step 2, sampling to remove a customer (xj,n) eating dish X∗k from

node j (i.e., restaurant j in the CRP representation), since the decomposition of

t∗j,k makes the sampling more complex than in Algorithm 3. If xj,n has contributed

a table, which floor is the table located in? Based on the recorded counts, n∗j,k’s,

s∗i,j,k’s and t∗j,k’s, we cannot tell the exact floor (recall that each floor corresponds

to a parent) because there could be multiple floors serving X∗k . For example, X∗1
and X∗3 are served in both floors in restaurant 2 in Figure 3.9. Consequently, it is

necessary to consider all possibilities by computing the probabilities of allocating

a table contributed by xj,n to any floors serving X∗k . That is, given xn = X∗k and

all the counts, we have

p(uj,n = i |xj,n = X∗k) =
s∗i,j,k
n∗j,k

for i ∈ Pa(j) (3.15)

p(uj,n = 0 |xj,n = X∗k) =
n∗j,k − t∗j,k
n∗j,k

(3.16)

Finally, sampling for the CPDP at each node, we can adapt Algorithm 3

by replacing Equation (3.9) with Equation (3.14), and Equations (3.10) with

Equations (3.15) and (3.16). However, to do sampling in the whole DAG, one

needs to modify Algorithm 3 with recursions. I will give a concrete example in

Chapter 7 by embedding the CPDP in a document structure.

To deal with the mixture weights, ρj, we can predefine the weights with

respect to how important each parent node i is to the node j, or we can even

make ρj uniformly distributed. The approach adopted here is to put either an

informative or a non-informative prior on ρj. In regard to Dirichlet-Multinomial

conjugacy and applications to discrete domains, such as language processing,
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a |Pa(j)|-dimension Dirichlet distribution is used, i.e., ρj ∼ Dir|Pa(j)|(%) .

With ρj marginalised out, Equations (3.12) and (3.14) can be further changed to

respectively

p
(
xj, t

∗
j | aj, bj, G1, G2, · · · , G|Pa(j)|

)
=

Γ
(∑

i∈Pa(j)
%i,j

)
∏

i∈Pa(j)
Γ(%i,j)

∏
i∈Pa(j)

Γ
(
%i,j +

∑K
k=1 s

∗
i,j,k

)
Γ
(∑

i∈Pa(j)
%i,j +

∑K
k=1 t

∗
j,k

)
(bj|aj)Tj
(bj)Nj

 K∏
k=1

S
n∗j,k
t∗j,k,aj

C
t∗j,k
s∗j,k

∏
i∈Pa(j)

Gi(X
∗
k)s
∗
i,j,k

 (3.17)

p
(
xj, uj | aj, bj, G1, G2, · · · , G|Pa(j)|

)
=

Γ
(∑

i∈Pa(j)
%i,j

)
∏

i∈Pa(j)
Γ(%i,j)

∏
i∈Pa(j)

Γ
(
%i,j +

∑K
k=1 s

∗
i,j,k

)
Γ
(∑

i∈Pa(j)
%i,j +

∑K
k=1 t

∗
j,k

)
(bj|aj)Tj
(bj)Nj

 K∏
k=1

S
n∗j,k
t∗j,k,aj

(
C
n∗j,k
t∗j,k

)−1 ∏
i∈Pa(j)

Gi(X
∗
k)s
∗
i,j,k

 (3.18)

The differences between the Gibbs sampling scheme proposed in [Wood and

Teh, 2009] and those discussed above reside in the differences between the SSA

and the CMGS/BTIGS. Wood and Teh’s scheme is based on a modified version

of the SSA (see Equation 3.1) according to the multi-floor Chinese restaurant

franchise representation, which is a direct extension of the Chinese restaurant

franchise representation in [Teh et al., 2006]. In their method, we have to do

bookkeeping of menu indicator variables (i.e., floor variables in [Wood and Teh,

2009]) as discussed in Section 2.4, when unseating and reseating customers. The

purpose of the bookkeeping is to keep track of the parent restaurants to which

each table should be sent as a proxy customer in the DAG structure. Therefore,

in the sampling procedure, if unseating (reseating) a customer causes removing

(adding) a table in a restaurant, it is essential to recursively sample to remove

(add) a proxy customer (and a table if necessary) to the corresponding parent

restaurant, see the predictive distribution shown in Equation 2.13.

However, the schemes based on the CMGS/BTIGS do not require to maintain

the menu indicator variables, since both the CGMS and BTIGS have integrated

out all the possible seating arrangements, refer to Sections 3.3 and 3.4. All need

to be kept are table counts, i.e., s∗i,j,k’s in each restaurant. In order to compute

the table counts, we must recursively check whether a table needs to be removed
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(added) from a restaurant and its corresponding parent restaurants, if a cus-

tomer is unseated (reseated). Specifically, if a table is added or removed from a

restaurant, we need to consider all the possible linked paths from this restaurant

towards the root, where a proxy customer (and a table if necessary) can be recur-

sively added or removed. Because menu indicator variables are not dynamically

recorded, one needs to sample over all the possible paths to add or remove a

table. See for example the inference scheme for the AdaTM in Chapter 7, which

used Equation 3.18 based on the BTIGS.

3.7 Summary

In this Chapter, I have reviewed Teh’s sampling for seating arrangement (SSA)

sampler, and introduced the collapsed multiplicity Gibbs sampler (CMGS) and

the blocked table indicator Gibbs sampler (BTIGS). The results of experiments

run in a simply controlled environment of multinomial sampling have prelimi-

narily shown that the CMGS and BTIGS converges much faster than the SSA

does. It would be very interesting to further compare the three samplers in dif-

ferent contexts, for instance, to compare the three samplers in topic models or

the word segmentation models by [Goldwater et al., 2009].

The techniques for doing posterior inference with networks of PDPs or CPDPs

can be readily developed from these likelihoods, i.e., Equations (3.6), (3.9), (3.12)

and (3.14). In Chapters 5 , 6 and 7, I will show these can be used to do inference

for structured topic models.
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Chapter 4

Probabilistic Topic Modelling

Topic modelling is an increasingly useful class of techniques for analysing not only

large unstructured documents but also data that posit “bag-of-words” assump-

tion, such as genomic data [Flaherty et al., 2005] and discrete image data [Wang

and Grimson, 2008]. As a promising unsupervised learning approach with wide

application areas, it has gained significant momentum recently in machine learn-

ing, data mining and natural language processing communities. In this chapter, I

discuss briefly the fundamentals (e.g., basic idea and posterior inference) of topic

models, especially Latent Dirichlet Allocation (LDA) by Blei et al. [2003] that

acts as a benchmark model in the topic modelling community, since these are the

important prerequisites for understanding the structured topic models that will

be developed in Chapters 5, 6 and 7.

This chapter is organised as follows. The basic idea of the probabilistic topic

models is discussed in Section 4.1. Section 4.2 gives an fairly detailed introduc-

tion to LDA, then the Gibbs sampling algorithm for LDA is presented in Sec-

tion 4.3. Finally, I will discuss applications of topic models in Section 4.4.

4.1 Probabilistic Topic Models

Probabilistic topic models [Deerwester et al., 1990; Hofmann, 1999, 2001; Blei

et al., 2003; Girolami and Kabán, 2003; Buntine and Jakulin, 2006; Steyvers and

Griffiths, 2007; Blei and Lafferty, 2009; Heinrich, 2008] are a discrete analogue to

principal component analysis (PCA) and independent component analysis (ICA)

that model topic at the word level within a document [Buntine, 2009]. They

have many variants such as Non-negative Matrix Factorisation (NMF) [Lee and

Seung, 1999], Probabilistic Latent Semantic Indexing (PLSI) [Hofmann, 1999]

61
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and LDA [Blei et al., 2003], and have applications in fields such as genetics

[Pritchard et al., 2000; Flaherty et al., 2005], text and the web [Wei and Croft,

2006; B́ıró et al., 2008], image analysis [Li and Perona, 2005; Wang and Grimson,

2008; He and Zemel, 2008; Cao and Fei-Fei, 2007; Wang et al., 2009a], social

networks [McCallum et al., 2007; Mei et al., 2008] and recommender systems

[Pennacchiotti and Gurumurthy, 2011]. A unifying treatment of these models and

their relationship to PCA and ICA is given by Buntine and Jakulin [2006]. The

first Bayesian treatment was due to Pritchard et al. [2000] and the broadest model

is the Gamma-Poisson model of Canny [2004].

Specifically, probabilistic topic models are a family of generative models for

learning the latent semantic structure of a corpus by using of a hierarchical

Bayesian analysis of the text content. Their fundamental idea is that each doc-

ument is a convex mixture of latent topics, each of which is a probability distri-

bution over words in a vocabulary. Clearly, a topic model is a factor model that

specifies a simple probabilistic process by which documents can be generated.

It reduces the complex process of generating a document to a small number of

probabilistic steps by assuming exchangeability.

To generate a new document, a distribution over topics (i.e., a topic distribu-

tion) is first drawn from a probability distribution over a measurable space. Then,

each word in the document is drawn from a word distribution associated with a

topic that is drawn from the generated topic distribution. The semantic properties

of words and documents can be expressed in terms of probabilistic topics. Let µ

be document specific topic distribution, φ1:K be topic specific word distributions,

zi be a topic associated with word wi, where zi ∈ {1, . . . , K}, a topic model can

be interpreted in term of a mixture model as

wi | Φ, zi ∼ F (φzi) for i = 1, 2, . . . , n

zi | µ ∼ µ for i = 1, 2, . . . , n,

where F (·) is set in general to a multinomial distribution, and a Dirichlet distri-

bution (see Chapter 2) is put as a prior on µ.

Applying standard Bayesian inference techniques, we can invert the generative

process to infer a set of optimal latent topics that maximises the likelihood (or

the posterior probability) of a collection of documents. Compared with the purely

spatial representation (e.g., Vector Space Model [Salton and McGill, 1986]), the

superiority of representing the content of words and documents in means of prob-

abilistic topics is that each topic can be individually interpretable as a proba-

bility distribution over words, it picks out a coherent cluster of correlated terms



4.2. LATENT DIRICHLET ALLOCATION 63

[Steyvers and Griffiths, 2007]. We should also note that each word can appear in

multiple clusters, just with different probabilistic weights, which indicates topic

models could be able to capture polysemy [Steyvers and Griffiths, 2007]. The gen-

erative process is purely based on the “bag-of-words” assumption where only word

occurrence information (i.e., frequencies) is taken into consideration. This well

corresponds to the assumption of exchangeability in Bayesian statistics. However,

word-order is ignored even though it might contain important contextual cues to

the original content.

As a probabilistic generative process, variants and extensions of topic models

can be used to postulate complex latent semantic structures responsible for a

collection of documents, making it possible to use Bayesian inference to recover

those structures. The goal of fitting those topic models is to find the best set

of latent topics that can well explain the observed data (e.g., documents). In

topic modelling literature, there are two ways in general to do approximate pos-

terior inference, one is variational inference [Jordan et al., 1999], the other is

Gibbs sampling [Neal, 2000; Robert and Casella, 2005]. The latter is discussed in

Section 4.3.

4.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [Blei et al., 2003], a full Bayesian extension of

PLSI, is a three-level hierarchical Bayesian model for collections of discrete data,

e.g., documents. It is also known as multinomial PCA [Buntine, 2002].

Compared with PLSI, LDA puts a Dirichlet prior on topic distributions, which

overcomes the difficulty, faced by PLSI, in the generalisability of modelling the

unseen documents. Girolami and Kabán [2003] showed that PLSI is a maximum a

posterior estimate of LDA with a uniform Dirichlet prior. Choosing the Dirichlet

prior simplifies the problem of posterior inference due to the Dirichlet-Multinomial

conjugacy, see Property 2.2 in Chapter 2. Moreover, if the Kullback-Leibler mea-

sure is used, instead of least square, then NMF behaves like a maximum likelihood

version of LDA.

As a fundamental model for topic modelling, LDA is usually used as a bench-

mark model in the empirical comparison with its various extensions. Figure 4.1

illustrates its graphical representation using plate notation (see [Buntine, 1994]

for an introduction). In this notation, shaded and unshaded nodes indicate ob-

served and unobserved (i.e., latent or hidden) variables respectively; arrows in-
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Figure 4.1: Latent Dirichlet allocation

dicate conditional dependencies among variables; and plates indicate repeated

sampling.

For document analysis, LDA is a hidden variable model of documents. The

observed data are words w of each document, the two hidden variables are µ (the

topic distribution) and z (the word-topic assignment), and the model parameters

are the Dirichlet prior α and φ1:K (word distributions). To generate documents,

LDA assumes the following generative process:

1. For each topic k where k ∈ {1, . . . , K}

(a) Draw word distribution φk ∼ DirV (γ)

2. For each document i ∈ {1, . . . , I}

(a) Draw topic distribution µi | α ∼ DirK(α)

(b) For each word wi,l in i, where i ∈ {1, . . . , Li}

i. Draw a topic zi,l | µi ∼ Discrete(µi)

ii. Draw a word wi,l | zi,l, φ1:K ∼ Discrete(φzi,l).

Here, the hyper-parameter γ is a Dirichlet prior on word distributions (i.e., a

Dirichlet smoothing on the multinomial parameter φk [Blei et al., 2003]), and

DirK(·) indicates a K-dimensional Dirichlet distribution. The model parameters

can be estimated from data. The hidden variables can be inferred for each doc-

ument by simply inverting the generative process. These hidden variables are

useful for ad-hoc document analysis, for example, information retrieval [Wei and

Croft, 2006] and document summarisation [Arora and Ravindran, 2008a,b]. With

this process, LDA models documents on a low-dimensional topic space1, which

1Note the number of topics associated with a document collection is usually far smaller than

the vocabulary size, since documents in a collection tend to be heterogeneous.
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provides not only an explicit semantic representation of a document, but also a

hidden topic decomposition of the document collection [Blei and Lafferty, 2009].

Given the Dirichlet priors α, γ, and the observed documents w1:I , the joint

distribution of both the observed and the hidden variables can be read directly

from Figure 4.1 using distributions given in the above generative process as:

p(µ1:I , z1:I , w1:I | α, γ)

=
K∏
k=1

p(φk | γ)
I∏
i=1

p(µi|α)

Li∏
l=1

p(zi,l|µi)p(wi,l|φzi,l) . (4.1)

The variables φ1:K are corpus level variables, which are assumed to be sampled

once for the corpus; document level variables µi’s are sampled once for each

document; and variables zi,l’s are word level variables that are sampled once per

word in each document.

Given the observed documents w1:I , the task of Bayesian inference is to com-

pute the posterior distribution over the model parameters φ1:K and the hidden

variables, µ1:I , and z1:I,1:L. The posterior is

p(µ1:I , z1:I , φ1:K | w1:I , α, γ)

=
p(µ1:I , z1:I , w1:I | α, γ)∫

µ

∫
φ

∑
z p(µ1:I , z1:I , w1:I | α, γ)

.

Although LDA is a relatively simple model, a direct computation of this

posterior is infeasible due to the summation over topics in the integral in the

denominator. Training LDA on a large collection with millions of documents

can be challenging and efficient exact algorithms have not been found [Buntine,

2009]. Therefore, one has to appeal to approximate inference algorithms and the

following methods are used, i.e., the mean field variational inference [Blei et al.,

2003], the collapsed variational inference [Teh et al., 2007], the expectation prop-

agation [Minka and Lafferty, 2002], and Gibbs sampling [Griffiths and Steyvers,

2004]. Buntine and Jakulin [2006] have given a fairly detailed discussion on some

of those methods. They also mentioned some other methods, such as the direct

Gibbs sampling by Pritchard et al. [2000] and Rao-Blackwellised Gibbs sampling

by Casella and Robert [1996].

Furthermore, Wallach et al. [2009] have studied several classes of structured

priors for LDA, i.e., asymmetric or symmetric Dirichlet priors on µ and φ. They

have shown that LDA with an asymmetric prior on µ significantly outperforms

that with a symmetric prior. However, there is no benefit while putting an asym-

metric prior on φ. Sato and Nakagawa [2010] have further put a PDP prior (see
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Section 2.3) on φ to introduce the power-law phenomenon of a word distribution

in topic models. They have shown a better performance than the standard LDA.

Out of all the proposed approximate inference algorithms, each of which has

advantages and disadvantages, a thorough comparison of these algorithms is not a

goal of this thesis. Hereafter I will focus on the collapsed Gibbs sampling algorithm

introduced in [Griffiths and Steyvers, 2004], details can be found in [Steyvers and

Griffiths, 2007]. The collapsed Gibbs sampler is found to be good as others. It is

also general enough to be a good base for extensions of LDA.

4.3 Approximate Inference via Gibbs Sampling

Since we can easily write down the full conditional distribution p(zi,l|z−zi,l ,w)

by marginalising out the document-topic distributions, i.e., µ1:I , from the joint

distribution, Equation (4.1), it is straightforward to use Gibbs sampling [Geman

and Geman, 1990], a special case of the Metropolis-Hastings algorithm in the

Markov chain Monte Carlo (MCMC) family. The collapsed Gibbs sampling algo-

rithm for LDA marginalises out µ1:I and φ1:K , instead of explicitly estimating

them. The strategy of marginalising out some hidden variables is usually referred

to as “collapsing” [Neal, 2000], which is the same as Rao-Blackwellised Gibbs sam-

pling [Casella and Robert, 1996]. The collapsed algorithm samples in a collapsed

space, rather than sampling parameters and hidden variables simultaneously [Teh

et al., 2007]. So, Griffiths and Steyvers’ algorithm is also known as a collapsed

Gibbs sampler.

The principle of Gibbs sampling is to simulate the high-dimensional probabil-

ity distribution by conditionally sampling a lower-dimensional subset of variables

via a Markov chain, given the values of all the others fixed. The sampling pro-

ceeds until the chain becomes stable (i.e., after the so-called “burn-in” period,

the chain will burn-in to a stable local optimum). Theoretically, the probability

distribution drawn from the chain after the “burn-in” period will asymptotically

approach the true posterior distribution. In regard to LDA, the collapsed Gibbs

sampler considers all word tokens in a document collection, and iterates over

each token to estimate the probability of assigning the current token to each

topic, conditioned on topic assignments of all the other tokens.

To derive the full conditional distributions, we need first to compute the

joint distribution given in Equation (4.1) by using the Dirichlet integral. Let

nk = (nk,1, nk,2, . . . , nk,V ) where nk,v is the number of times word v is assigned
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a topic k; and mi = (mi,1,mk,2, . . . ,mi,K) where mi,k is the number of word

tokes in document i to which topic k is assigned. Thus, given all the documents,

Equation (4.1) is further computed as

p(z1:I , w1:I | α, γ) =
K∏
k=1

BetaV (γ + nk)

BetaV (γ)

I∏
i=1

BetaK(α+mi)

BetaK(α)
(4.2)

With a simple cancelation of Equation (4.2), the full conditional distribution

can be derived as

p(zi,l = k|z−zi,l1:I ,w1:I ,α,γ) ∝
nk,wi,l + γwi,l∑V
v=1 (nk,v + γv)

mi,k + αk∑K
k′=1 (mi,k′ + αk′)

, (4.3)

After a sufficient number of Gibbs iterations, which means the sampler has

burned-in, the Markov chain is ready to sample. Given the posterior sample

statistics, the latent variable µ and the model parameter φ can be estimated

using the expectation of the Dirichlet distribution (see Section 2.1) as:

φk,v =
nk,v + γv∑V

v′=1 (nk,v′ + γ′v)
µi,k =

ni,k + αk∑K
k′=1 (ni,k′ + αk′)

Due to the extensive computations required by the topic sampling for each

word token, particularly while the number of topics and the corpus size are large

(which is usually the case in real applications), Porteous et al. [2008] presented

a fast collapsed Gibbs sampling algorithm, an efficient variant of Griffiths and

Steyvers’ sampler. This fast version significantly reduces the sampling operations

based on the notion of skewed sampling distribution, which means the probability

mass is always put on a small fraction of K topics. With the same motivation,

Xiao and Stibor [2010] gave another version of fast sampling method that puts a

multinomial distribution on the number of times each word type is sampled in a

document.

4.4 Applications and Extensions

Since the first introduction of topic models, particularly PLSI and LDA, they

have been broadly applied for machine learning and data mining, particularly in

information retrieval, text analysis and computer vision. For instance,

Information retrieval Azzopardi et al. [2004]; Buntine et al. [2004]; Wei and

Croft [2006]; Chemudugunta et al. [2007]; Tang et al. [2011] have adapted

topic models to information retrieval. Some of them have shown that topic
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model based information retrieval methods can outperform alternative meth-

ods that are based on, for example, Latent Semantic Indexing [Deerwester

et al., 1990], the mixture of uni-grams model [McCallum, 1999]. B́ıró et al.

[2008] employed a modified LDA, so-called multi-corpus LDA, to handle the

problem of web spam filtering, which demonstrates a relative improvement

over a strong content and link feature baseline.

Text analysis Multi-document summarisation is an interesting application of

topic models in the text analysis domain. It is an automatic procedure that

aims at the identification of the essence of a set of related documents. The

LDA mode can be used to decompose a document collection into different

topics, and then find the sentences that adequately represent these top-

ics. Arora and Ravindran [2008a,b] described an approach that uses LDA

to capture the underlying topics of a set of documents, and further uses

Singular Value Decomposition (SVD) to find the most orthogonal repre-

sentation (topic vector) of sentences. Those sentences can be chosen to be

put together as a summarisation. Purver et al. [2006]; Misra et al. [2009];

Blei and Moreno [2001] have further used topic models in semantic text

segmentation. The segment boundaries are determined based on the topic

change. Some other applications of topic models in text analysis are such as

sentiment analysis [Mei et al., 2007; Titov and McDonald, 2008a,b; Lin and

He, 2009; Brody and Elhadad, 2010], sparse text classification (e.g., twitter

[Ritter et al., 2010], web segments [Phan et al., 2008] and microblogs [Ra-

mage et al., 2010]), entity resolution [Bhattacharya and Getoor, 2006], and

word sense disambiguation [Boyd-Graber et al., 2007].

Computer vision Topics models have also been adapted for computer vision. For

example, LDA has been used to discover objects from images [Cao and Fei-

Fei, 2007], and to classify images into different categories [Li and Perona,

2005], and to assort human actions [Niebles et al., 2008]. In particular,

Wang and Grimson [2008] proposed a Spatial Latent Dirichlet Allocation

(SLDA) model which encodes spatial structures among visual words (or im-

age patches). It partitions the visual words that are close in space into the

same documents. In discovering objects from a collection of images, SLDA

outperforms LDA.

Furthermore, standard topic models, especially LDA, have been extended in

several ways to relax assumptions (i.e., “bag-of-words” and the fixed number of
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topics) or to incorporate beyond the “bag-of-words” information.

In order to model how topics evolve over time in large sequentially organised

documents, [Blei and Lafferty, 2006b] introduced a dynamic topic model (DTM)

which removes the document exchangeability assumption (i.e., the joint posterior

distribution is invariant to permutations of the ordering of documents [Blei, 2011])

made by LDA. The DTM puts a random walk model on the natural parameters

of multinomial distributions (denoted by β1:K) to model sequential data depen-

dencies. In the DTM, corpus is divided by time slice. Documents within each time

slice are modelled with a K-component LDA. Topics associated with time slice t

evolve from those associated with time slice t − 1 [Blei and Lafferty, 2009]. The

DTM chains the natural parameters for each topic k (βt,k) at different time slices

in a random walk model that evolves with Gaussian noise as

βt,k |βt−1,k ∼ N (βt−1,k, σ
2I).

It is clear that the natural parameters at time slice t− 1 are the expectation for

the distribution of the natural parameters at time slice t, and the correlation of

samples from the above distribution is controlled through adjusting the distri-

bution variance. Then, βt,k is mapped to the multinomial mean parameters φt,k
by

φt,k,w =
eβt,k,w∑
w′ e

βt,k,w′
.

However, the nonconjugacy of the Gaussian and the multinomial makes exact

posterior inference intractable. The authors adapted Kalman Filtering to do an

approximated inference. Here, we should note that the DTM allows topics them-

selves to change over time.

In the DTM, data are required to be divided into discretised time slices. Wang

et al. [2008a] argued that “the choice of discretisation affects the memory re-

quirements and computational complexity of posterior inference”. They further

generalised the DTM to handle the continuous time space using a Brownian mo-

tion model. In the continuous DTM, the natural parameters of the multinomial

distributions evolve as

βt,k |βt−1,k ∼ N (βt−1,k, v∆tI),

where ∆t is the elapsed time between time points t − 1 and t. Thus, we can see

that the difference between the continuous DTM and the DTM resides in the

way of handling time. Other models following the DTM are used quite often in

data mining to analyse streamed data to identify topic trends, e.g., the on-line
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LDA model [AlSumait et al., 2008], topics over time model [Wang and McCallum,

2006], the inheritance topic model [He et al., 2009], the Markov topic model [Wang

et al., 2009b] and the dynamic mixture model [Wei et al., 2007].

The “bag-of-words” assumption made by LDA assumes the order of the words

in each document does not matter, but this assumption is sometimes unrealistic

and can cause to mistakenly neglect the important contextual information con-

veyed by word-orders. Griffiths et al. [2005] and Wallach [2006] presented two

extensions of LDA to model words unexchangeably. Griffiths et al. [2005] used

a combined model to capture the syntactic (word-orders) and semantic (topics)

by alternating between a standard HMM and LDA. While Wallach [2006] in-

serted a Dirichlet bigram language model [Mackay and Peto, 1995] into LDA

to generate topics conditioned on the context. A similar independence assump-

tion is also made on topics, which says the learned topics are unrelated to each

other. However, considering topic correlations may give us a rich posterior topic

structure. These models include the correlated topic model (CTM) [Blei and Laf-

ferty, 2006a], the Pachinko allocation model [Li and McCallum, 2006] and the

hierarchical LDA (hLDA) [Blei et al., 2010] and so on.

In the CTM, topic proportions are modelled by a logistic normal distribution

that allows for covariance structure among topics, instead of a Dirichlet distri-

bution. Now, the topic proportion µ in Figure 4.1 is generated by mapping a

multivariate random variable from RK to the K-simplex as follows:

µ′ | η,Σ ∼ N (η,Σ) µk =
eµ
′
k∑

k′ e
µ′
k′
,

where {η,Σ} is a K-dimensional mean and covariance matrix, in which each

entry specifies the correlation between a pair of topics. Clearly, the CTM uses

the covariance of the Gaussian to model the correlations between topics. Thus

topics are allowed to be correlated to each other. One should also note that

the number of parameters in the covariance matrix grows as O(K2). The PAM

captures the topic correlations with a directed acyclic graph. It extends to the

concept of topic to be a distribution not only over words, but also over interior

topics, see Section 2.4.3. The hLDA is built on top of nested Chinese restaurant

process (nCRP) which is defined as “a stochastic process that assigns probability

distributions to ensembles of infinitely deep, infinitely branching trees” [Blei et al.,

2010]. In the hLDA, topics are organised in a tree hierarchy on which nCRP is

used as a prior. To generate a document, the hLDA first draws a topic path from

the tree, then samples topics from the path. In this way, the hLDA can cluster
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documents according to the topic tree with multiple levels of abstraction.

How to incorporate meta-information (besides time) into topic modelling is

another line of research that is interesting in, for example, computer vision and

text mining, where the collected data usually come with meta-information, e.g.,

class labels, review rating, authors, and citations. The well-known models for this

kind of research include

The supervised LDA model [Blei and McAuliffe, 2007] that puts a logistic

regression on the word-topic assignments to generate observed features,

such as class labels;

The Dirichlet-multinomial regression model [Mimno and McCallum, 2008]

that can in principal incorporate arbitrary features;

The correlated labelling model [Wang et al., 2008b] that builds directly the

class label into the generative process;

The author-topic model [Rosen-Zvi et al., 2004; Steyvers et al., 2004] in which

the word-topic assignments are generated according to the topics distribu-

tions associated with different authors;

The linked-LDA model [Nallapati et al., 2008] that jointly models the text

and citations.

4.5 Summary

In conclusion, topic models have broad applications across different disciplines,

generally from machine learning to data mining. Although these models are

slightly different in the sense of assumptions, they share the same fundamen-

tal idea: mixtures of topics and probability distributions over words. It is worth

pointing out that most of them have to deal with the “bag-of-words” assumption,

and no one has paid attention to the subject structure of each individual document

that is buried in the high levels of document structures. However, Embedding the

document structures directly in topic models could yield a rich posterior topic

structure for each document, which can further help in ad-hoc document analysis.
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Chapter 5

Segmented Topic Model

The structure of documents into headings, sections, and thematically coherent

parts, implies something about shared topics, and also plays an important role

in document browsing and retrieval. In this chapter I take the simplest form of

structure, a document consisting of multiple segments, as the basis for a new

form of topic model, named Segmented Topic Model (STM), which leverages the

structure of a document, instead of learning it. To make the model computation-

ally feasible, and to allow the form of collapsed Gibbs sampling that has worked

well to date with topic models, the marginalised PDP posterior (see Section 3.3)

is used to handle the hierarchical modelling. I compare it with the standard topic

models (e.g., LDA reviewed in Chapter 4) and existing segmented models. The

new model significantly outperforms standard topic models on either whole doc-

ument or segment, and the existing segmented models, based on the held-out

perplexity measure.

This chapter is organised as follows. In Section 5.1 I give an introduction to

the motivation of STM. In section 5.2, I discuss related works in the literature

of topic modelling. Then, I describe STM in detail and the posterior inference

based on the PDP in Sections 5.3 and 5.4 respectively. In Section 5.5, I compare

STM with LDA and the existing segmented models. The experimental results on

several document collections are reported in Section 5.6.

5.1 Introduction

In recent years, documents continue to be digitised and stored in the form of web

pages, blogs, twitters, books, scientific articles and so on. A majority of these

documents come naturally with structure. They are structured into semantically

73
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coherent parts to ease understanding and readability of texts. A complete rep-

resentation of the document structure ranges from the semantically high-level

components (e.g., chapters and sections) to the low-level components (i.e., sen-

tences and words). For instance, a book has chapters which itself contains sec-

tions, a section is further composed of paragraphs; a blog/twitter page contains

a sequence of comments and links to related blogs/twitters; a scientific article

contains appendices and references to related work.

In text analysis, some forms of structure are modelled with links in a docu-

ment, and many different approaches follow from the key initial paper by Cohn

and Hofmann [2001]. Some forms of structure are readily modelled simply by typ-

ing tokens, separating out the words, the links, maybe the names, into different

multinomials in the topic model, easily done with existing theory [Buntine and

Jakulin, 2006, Section 5.2]. Other forms of structure work with the topic space

themselves [Blei et al., 2003; Mimno et al., 2007]. However, a different challenge

in text analysis is the problem of understanding the document structure. Here I

look at the original layout of each document as the guide to structure by following

the ideas of Shafiei and Milios [2006], who developed a hierarchical model of the

segments in a document.

Given a collection of documents, each of which consists of a set of segments

(e.g., sections, paragraphs, or sentences), each segment contains a group of words,

it is interesting to explore the latent subject structure of each document by taking

into account segments and their layout. I believe segments in a document not only

have meaningful content but also provide preliminarily structural information,

which can aid in the analysis of the original text. This idea actually originates

from the way in which people normally compose documents (e.g., essays, theses

or books). When starting to write a document, people always bear in mind that

they need first come up with some main ideas that they want to talk about; then

decide a structure to organise these ideas logically and smoothly through, for

example, chapters in a book, or sections in an article; and the ideas assigned to

different segments could vary around the main ideas.

Can we statistically model documents in this manner? I adopt the probabilistic

generative models called topic models to test this hypothesis. The basic idea is

that each document is a random mixture over several latent topics, each of which

is a distribution over words. Topic models specify a simple probabilistic process

by which words can be generated, see Chapter 4. Here, we can consider LDA,

as a way of modelling “ideas” with topics. However, LDA cannot simultaneously

learn main ideas and sub-ideas under the same latent topic settings.
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Extending LDA to involve segments of a document, Shafiei and Milios [2006]

presented a Latent Dirichlet Co-Clustering (LDCC) model. It assumes there are

two kinds of topics, document-topics (i.e., distributions over segments) and word-

topics (i.e., distributions over words). In LDCC, documents are random mixtures

of document-topics, and segments are random mixtures of word-topics. To gen-

erate a word-topic distribution for a segment, one needs to first draw for each

segment a document-topic from the document-topic distribution. Clearly, LDCC

does not share topics between documents and their segments. It also assumes

that each segment is associated with only one document-topic. I will argue that

these assumptions can be removed by using distributions over topics (i.e., topic

proportions), which require more powerful statistical tools.

In subsequent sections, I develop a simple structured topic model using the

PDP in a finite discrete space, which is discussed in Section 2.3. This has the ad-

vantage of allowing a collapsed Gibbs sampler (see Section 3.3) to be developed

for a hierarchical structure model. The proposed new topic model takes into ac-

count the beyond “bag-of-words” information, i.e., a simple document structure,

to enhance the understanding of the original text content.

5.2 Related work

Generative probabilistic topic models, see Chapter 4, are designed to identify

topical representations of the textural data, which can reveal word usage patterns

within or across documents. They have been widely applied to different kinds of

documents, such as articles [Griffiths and Steyvers, 2004; Blei et al., 2003], emails

[Mccallum et al., 2004], web blogs [Ramage et al., 2010], web spams [B́ıró et al.,

2008], customer profiles [Xing and Girolami, 2007], etc. They share a common

assumption, “bag-of-words” that is the most widely used representation of text

documents [Sebastiani, 2002].

Recently, some researchers have given attention to the study of how to explore

the beyond “bag-of-words” information in topic modelling, such as the word order

and topic structure. Griffiths et al. [2005] presented a composite model that makes

use of the short-range syntactic dependencies among the words within the limit

of a sentence. This model consists of two parts, a hidden Markov model (HMM)

and a topic model. The former handles the syntactic word dependencies, the

latter deals with the word semantics. Wallach [2006] gave another topic model

that extends LDA by incorporating a notion of word orders via the combination
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of the n-gram statistics and latent topics.

The other models, which discover the structure of latent topics, include the

correlated topic model (CTM) [Blei and Lafferty, 2006a], the Pachinko alloca-

tion model (PAM) [Mimno et al., 2007], the hierarchical Dirichlet process (HDP)

[Teh et al., 2006], the hierarchical LDA (HLDA) [Blei et al., 2010], etc. Since

the Dirichlet distribution is usually used in topic modelling as a prior to gen-

erate document topic proportions, a latent assumption is that topics are nearly

independent. However, it is common to have correlations among topics in textual

data. The CTM tries to capture the pairwise topic correlations by replacing the

Dirichlet distribution with a logistic normal distribution. The PAM extends the

concept of topics to include distributions not only over words but also over top-

ics. The HDP (see Section 2.2.2) is built on top of pre-clustered data, i.e., data

groups, that have a pre-defined hierarchical structure. The HLDA organises top-

ics into a tree with different levels of abstraction. The nested Chinese restaurant

process defines a prior on the tree. For more discussion, see Section 4.4.

All these models attempt to capture the intra-topic correlation (i.e., the hier-

archical structure of topics themselves) that is quite different from the document

structure this chapter deals with. The benefit of modelling document structure is

Table 5.1: List of notations for STM

Notation. Description.

K number of topics

I number of documents

Ji number of segments in document i

Li,j number of words in document i, segment j

W number of words in dictionary

α base distribution for document topic probabilities

µi document topic probabilities for document i, base distribution

for segment topic probabilities

νi,j segment topic probabilities for document i and segment j

Φ word probability vectors as a K ×W matrix

φk word probability vector for topic k, entries in Φ

γ W -dimensional vector for the Dirichlet prior for each φk
wi,j,l word in document i, segment j, at position l

zi,j,l topic for word in document i, segment j, at position l
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that it can help understand the hierarchical subject structure of each individual

document. Some previous research considers document internal structure with

topic modelling. A considerable body of this line of research is in the field of

topic segmentation, i.e., division of a text into topically coherent segments. For

example, the aspect HMM model [Blei and Moreno, 2001] assumes that each

segment is generated from a unique topic assignment, and those latent topics

have Markovian relations. Similar models include the hidden topic Markov model

[Gruber et al., 2007], the structural topic model [Wang et al., 2011]. Instead of

assuming each segment is assigned one topic, Purver et al. [2006] proposed a topic

segmentation model in which each segment is associated with a topic distribu-

tion drawn from a Dirichlet distribution, like the multinomial mean shift model

[Mochihashi and Matsumoto, 2006]. Indeed, STM shares a similar assumption as

the model by Purver et al. [2006]. However, those models were designed to learn

the topical structure of documents, while STM tries to leverage the structure in

topic modelling.

5.3 STM Generative Process

The segmented topic model (STM) is a four-level probabilistic generative topic

model with two levels of topics proportions, a level of topics and a level of words.

Before specifying STM, I list all notations and terminologies being used. No-

tation is depicted in Table 5.1. The following terms and dimensions are defined:

• A word is the basic unit of the text data, indexed by {1, . . . ,W} in a

vocabulary.

• A segment is a sequence of L words. It can be a section, paragraph, or even

sentence. In this chapter, I assume segments are paragraphs or sentences.

• A document is an assemblage of J segments, as shown in the left of Fig-

ure 5.1, where d indicates a document, sjs are segments, and wls are words.

Notice that J is known a priori.

• A corpus is a collection of I documents.

The basic idea of STM is to assume that each document i has a certain mixture

of latent topics, denoted by probability vector µi, and is composed of meaningful

segments; each of those segments also has a mixture over the same space of latent

topics as those for the document, and these are denoted by probability vector νi,j
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Figure 5.1: Graphical representation of mapping a document layout to a docu-

ment subject structure in the STM. The left is the layout, and the right is the

subject structure.

for segment j of document i. Both the main ideas of a document and sub-ideas

of its segments are modelled here by the topic distributions. Sub-ideas are taken

as variants of the main ideas, and thus sub-ideas can be linked to the main ideas,

given correlations between a document and its segments, as shown in Figure 5.1.

How do the segment proportions νi,j vary around the document propor-

tions µi? The use of the PDP as νi,j ∼ PDP(a, b,µi) distribution is a key

innovation here. One would be happy to use, instead, a distribution such as

νi,j ∼ Dirichlet(bµi) where b plays the role of “equivalent sample size”. How-

ever, such a distribution makes the prior not conjugate to the likelihood so general

MCMC sampling is required and parameter vectors such as µi can no longer be

integrated out to yield an efficient collapsed Gibbs sampler. I therefore employ

the following lemma adapted from [Buntine and Hutter, 2010]:

Lemma 5.1. The following approximations on distributions hold

PDP(0, b,Discrete(θ)) = Dir(bθ) ,

PDP(a, 0,Discrete(θ)) ≈ Dir(aθ) (as a→ 0),

The first approximation is justified because the means and the first two central

moments (orders 2 and 3) of the LHS and RHS distributions are equal. The

second approximation is justified because the mean and first two central moments

(orders 2 and 3) agree with error O(a2).

The PDP is a prior conjugate to the multinomial likelihoods, so allows col-

lapsed Gibbs samplers of the kind used for LDA. Thus, conditioned on the model

parameters α,γ,Φ and the PDP parameters a, b, STM assumes the following

generative process for each document i:
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Figure 5.2: Segmented topic model. The inner rectangle indicates repeated sam-

pling on words, the middle one indicates segments, the outer indicates documents.

1. Draw µi ∼ DirK(α)

2. For each segments j ∈ {1, . . . , Ji}

(a) draw νi,j ∼ PDP(a, b,µi)

(b) For each wi,j,l, where l ∈ {1, . . . , Li,j}

i. Select a topic zi,j,l ∼ DiscreteK(νi,j)

ii. Generate a word wi,j,l ∼ DiscreteW (φzi,j,l).

I have assumed the number of topics (i.e., the dimensionality of the Dirichlet

distribution) is known and fixed, and the word probabilities are parameterised

by a K ×W matrix Φ. The graphical representation of STM is shown in Fig-

ure 5.2. The complete-data likelihood of each document i (i.e., the joint distri-

bution of all observed and latent variables) can be read directly from the graph

using the distributions given in the above generative process.

5.4 Approximate Inference by CMGS

Having described the motivation behind STM, I now elaborate on the procedures

for the posterior inference and parameters estimation. In order to use this model,

the key inference problem that needs to be solved is to compute the posterior

distribution of latent variables (i.e., µ, ν and z) given the model parameters α,

Φ, a, b and observations w, i.e.,

p(µ,ν, z |w,α,Φ, a, b) =
p(µ,ν, z,w |α,Φ, a, b)∫

µ

∫
ν

∑
z p(µ,ν, z,w |α,Φ, a, b)

.
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Unfortunately, this posterior distribution cannot be computed directly, due

to the intractable computation of marginal probabilities in the denominator. We

must appeal to an approximated inference, where some of the parameters (e.g. µ,

ν and Φ) can be integrated out rather than explicitly estimated. Two standard

approximation methods have been applied to topic models: variational inference

[Blei et al., 2003] and collapsed Gibbs sampling [Griffiths and Steyvers, 2004]. I

use the latter in order to take the advantage of the collapsed Gibbs sampler for

the PDP, i.e., CMGS discussed in Section 3.3. Table 5.2 lists all statistics, which

are needed for the development of the Gibbs algorithm. The table count t∗i,j,k (i.e.,

the table multiplicity) and its derivatives are introduced in Section 3.3.

5.4.1 Model Likelihood

To build a collapsed Gibbs sampling algorithm, we need first to derive the joint

distribution over observations w, topic assignments z and the multiplicities t∗,

and then use this joint distribution to compute the full conditional distributions,

i.e.,

• p(zi,j,l | z
−zi,j,l
1:I,1:J ,w1:I,1:J , t

∗
1:I,1:J ,α,γ, a, b), and

Table 5.2: List of statistics for STM

Statistic. Description.

Mi,k,w topic by word total sum in document i, the number of

words with dictionary index w and topic k, i.e., Mi,k,w =∑Ji
j=1

∑Li,j
l=1 1zi,j,l=k1wi,j,l=w.

Mk,w Mi,k,w totalled over documents i, i.e.,
∑

iMi,k,w

M k vector of W values Mk,w

n∗i,j,k topic total in document i and paragraph j for topic k. n∗i,j,k =∑Li,j
l=1 1zi,j,l=k

Ni,j topic total sum in document i and segment j, i.e.,
∑K

k=1 n
∗
i,j,k.

n∗i,j topic total vector, i.e., (n∗i,j,1, n
∗
i,j,2, . . . , n

∗
i,j,K).

t∗i,j,k table count in the CRP for document i and segment j, for

topic k. This is the number of tables active for the k-th value.

Ti,j total table count for document i and segment j, i.e.,∑K
k=1 t

∗
i,j,k.

t∗i,j table count vector, i.e., (t∗i,j,1, t
∗
i,j,2, . . . , t

∗
i,j,K).



5.4. APPROXIMATE INFERENCE BY CMGS 81

• p(t∗i,j,k | z1:I,1:J ,w1:I,1:J , t
∗−t∗i,j,k
1:I,1:J ,α,γ, a, b).

The Dirichlet priors put on µi and the PDP priors on νi,j are conjugate to

the multinomial distributions, and the PDP is also conjugate to the Dirichlet dis-

tribution. The conjugacy makes the marginalisation much easier. Thus, the joint

conditional distribution of zi, t
∗
i,1:Ji

, wi can easily be computed by integrating

out µi, νi,1:Ji and Φ respectively as follows.

First, integrating out the segment topic distribution νi,j by using the joint

posterior distribution of observations and multiplicities for the PDP, see Equa-

tion 3.3, we have

p(µi, zi,1:Ji ,wi,1:Ji , t
∗
i,1:Ji
|α,Φ, a, b)

= P (µi |α)

∫ Ji∏
j=1

p(νi,j |µi, a, b)︸ ︷︷ ︸
νi,j∼PDP(a,b,µi)

Li,j∏
l=1

p(zi,j,l |νi,j)p(wi,j,l |φzi,j,l)dνi,j

=

(
1

BetaK(α)

K∏
k=1

µαk−1
i,k

)
Ji∏
j=1

(
(b|a)Ti,j
(b)Ni,j

K∏
k=1

S
n∗i,j,k
t∗i,j,k,a

µ
t∗i,j,k
i,k

)
︸ ︷︷ ︸

see Equation 3.3

K∏
k=1

W∏
w=1

φ
Mi,k,w

k,w

=

(
1

BetaK(α)

K∏
k=1

µ
αk+

(∑Ji
j=1 t

∗
i,j,k

)
−1

i,k

)
Ji∏
j=1

(
(b|a)Ti,j
(b)Ni,j

K∏
k=1

S
n∗i,j,k
t∗i,j,k,a

)
K∏
k=1

W∏
w=1

φ
Mi,k,w

k,w ,

where BetaK(α) is K dimensional Beta function that normalises the Dirichlet

(see Definition 2.1), and the last two products are derived by

p(wi,1:Ji | zi,1:Ji ,Φ) =
K∏
k=1

W∏
w=1

φ
Mi,k,w

k,w . (5.1)

Then, integrating out all the document topic distributions µi and the topic-word

matrix Φ with Dirichlet integral, as is usually done for collapsed Gibbs sampling

in topic models, gives

p(z1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J |α,γ, a, b)

=

∫ ( I∏
i=1

∫
p(µi, zi,wi, t

∗
i,1:Ji
|α,Φ, a, b)dµi

)
dΦ

=
I∏
i=1

BetaK

(
α+

∑Ji
j=1 t

∗
i,j

)
BetaK (α)

Ji∏
j=1

(
(b|a)Ti,j
(b)Ni,j

K∏
k=1

S
n∗i,j,k
t∗i,j,k,a

)
K∏
k=1

BetaW (γ +M k)

BetaW (γ)
. (5.2)
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5.4.2 Collapsed Gibbs Sampling Algorithm

Collapsed Gibbs sampling is a special form of MCMC simulation, which should

proceed until the Markov chain has “converged”, although in practice it is run for

a fixed number of cycles. While the proposed algorithm does not directly estimate

µ, ν and Φ, I will show how they can be approximated using the posterior sample

statistics of z and t∗. I adapt the CMGS algorithm proposed in Section 3.3 to

divide the sampling procedure to two stages. First, given all the table counts

t∗1:I,1:Ji
, the latent topic assignment zi,j,l for each word is sampled. Second, given

all the topic assignments of words z1:I,1:J , the table count t∗i,j,k is sampled for each

topic under each segment.

Now, the full conditional distribution for zi,j,l can be obtained by focusing

on a zi,j,l, and looking at the proportionalities in Equation (5.2). For this, t∗i,j,k
is mostly constant, as is Ni,j. Also, we have to take care of constraints on t∗i,j,k,

i.e., t∗i,j,k ≤ n∗i,j,k (see constraints (3.5)). Note that t∗i,j,k can be forced to decrease

when n∗i,j,k decreases by removing the current zi,j,l. Therefore, to compute the

final conditional distribution we have to distinguish among three cases:

1. Removing zi,j,l = k forces n∗i,j,k = t∗i,j,k = 0.

2. Before removing zi,j,l = k, n∗i,j,k = t∗i,j,k > 0, so t∗i,j,k should decrease by one,

i.e., t∗i,j,k = t∗i,j,k − 1.

3. Adding zi,j,l = k forces both n∗i,j,k and t∗i,j,k to change from zero to one.

Taking into account all cases, we can obtain the final full conditional distri-

bution

p(zi,j,l = k | z−zi,j,l1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J ,α,γ, a, b)

∝

 αk +
∑Ji

j=1 t
∗
i,j,k∑K

k=1

(
αk +

∑Ji
j=1 t

∗
i,j,k

) (b+ aTi,j)

1n∗
i,j,k

=0

Sn∗i,j,k+1

t∗i,j,k,a

S
n∗i,j,k
t∗i,j,k,a

1n∗
i,j,k

>0

γwi,j,l +Mk,wi,j,l∑W
w=1(γw +Mk,w)

(5.3)

Given the current state of topic assignment of each word, the conditional dis-

tribution for table count t∗i,j,k can be obtained by cancelation of terms in Equa-
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tion (5.2), yielding

p(t∗i,j,k | z1:I,1:J ,w1:I,1:J , t
∗−t∗i,j,k
1:I,1:J ,α,γ, a, b)

∝
Γ
(
αk +

∑Ji
j=1 t

∗
i,j,k

)
Γ

(∑K
k=1

(
αk +

∑Ji
j=1 t

∗
i,j,k

))(b|a)Ti,jS
n∗i,j,k
t∗i,j,k,a

, (5.4)

which stochastically samples the multiplicity t∗i,j,k. We should note that the value

of t∗i,j,k should be in a specific interval to obey the constraints on n∗i,j,k and

t∗i,j,k. The interval is [1, n∗i,j,k], if n∗i,j,k ≥ 2. There is no sampling t∗i,j,k required if

n∗i,j,k < 2. Algorithm 4 gives the collapsed Gibbs sampler for STM that is derived

from Algorithm 2.

From the statistics obtained after the burn-in of the Markov chain, we can

easily estimate the document topic distribution µ, the segment topic distribution

ν, and topic-word distributions Φ. They can be approximated from the following

posterior expected values via sampling:

µ̂i,k = Ezi,1:Ji ,t∗i,1:Ji |wi,1:Ji ,α,γ,a,b

 αk +
∑Ji

j=1 t
∗
i,j,k∑K

k=1

(
αk +

∑Ji
j=1 t

∗
i,j,k

)
 (5.5)

ν̂i,j,k = Ezi,1:Ji ,t∗i,1:Ji |wi,1:Ji ,α,γ,a,b
[
n∗i,j,k − a× t∗i,j,k

b+Ni,j

+ µi,k
Ti,j × a+ b

b+Ni,j

]
(5.6)

φ̂k,w = Ez1:I,1:J ,t∗1:I,1:J |w1:I,1:J ,α,γ,a,b

[
γw +Mk,w∑W

w′=1(γw′ +Mk,w′)

]
. (5.7)

5.4.3 Sampling the Concentration Parameter

Initial experiments showed the concentration parameter b of the PDP can strongly

affect perplexity results and seemed difficult to set by optimisation. I therefore

developed a simple sampling method using auxiliary variables as follows. Each

segment j of document i has an auxiliary probability qi,j ∼ Beta(b,Ni,j). From

this, using an improper prior for b of the form 1/b, the posterior for b is given by

b | q1:I,1:J , z1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J ,α,γ, a

∼ Gamma

(
I∑
i=1

Ji∑
j=1

Ti,j,
I∑
i=1

Ji∑
j=1

log 1/qi,j

)
. (5.8)

Sampling using these auxiliary variables operates every major Gibbs cycle as

follows:
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Algorithm 4 Collapsed Gibbs sampling algorithm for STM

Require: a, b, α, γ, K, Corpus, MaxIteration

Ensure: topic assignments for all words and all table counts

1. Topic assignment initialisation: randomly initialise topic assignments for all

the words.

2. Table count initialisation: randomly initialise all t∗i,j,k s.t. 0 ≤ t∗i,j,k ≤ n∗i,j,k. If

n∗i,j,k > 0, t∗i,j,k must be greater than 0.

3. Compute all statistics listed in Table 5.2

4. for iter ← 1 to MaxIteration do

5. foreach document i in corpus do

6. foreach segment j in i do

7. foreach word wi,j,l in j do

8. Exclude wi,j,l, and update all the related statistics with

current topic zi,j,l = k′ removed. The constraints on n∗i,j,k′

and t∗i,j,k′ must be satisfied.

9. Sample new topic k for wi,j,l using Equation (5.3).

10. Update all the statistics related to the new topic.

11. Remove the value of the current table count t∗i,j,k from the

statistics.

12. Sample new table count t∗i,j,k for the new topic k using

Equation (5.4).

13. Update the statistics with the new table count.

14. end for

15. end for

16. end for

17. end for
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1. Sample qi,j ∼ Beta(b,Ni,j) for each document i and segment j and compute∑I
i=1

∑Ji
j=1 log 1/qi,j.

2. Sample b according to the condition distribution (5.8).

5.5 Comparison with other Topic Models

In this section I compare STM, in terms of text modelling, with two topic models1,

Latent Dirichlet Allocation (LDA) [Blei et al., 2003] and Latent Dirichlet Co-

Clustering (LDCC) [Shafiei and Milios, 2006].

5.5.1 Latent Dirichlet Allocation

LDA is a three-level probabilistic generative model, the idea of which is that doc-

uments are random mixtures over latent topics, where each topic is a distribution

over words, see Chapter 4 for detailed discussion. Compared with LDA, instead

of sampling a topic zi,j,l directly from the document topic distribution µi, STM

adds another layer between zi,j,l and µi, which is the segment topic distribution

νi.j. Adding this distribution implies a higher fidelity of STM over LDA on mod-

elling the correlation between the document topics and its segment topics (i.e.,

the subject structure inside a document). LDA could also model the correlation

by having two runs through documents and their segments separately. Neverthe-

less, the consistency of underlying topics between two separate runs cannot be

guaranteed, since different runs will come up with different latent topics (due to

unsupervised learning). Therefore, LDA cannot simultaneously model document

topic distributions and segment topic distributions under the same latent topic

space, as does STM.

It is interesting that STM can reduce to LDA, if the concentration parameter

b of the PDP is set to an extremely large value, such as a value far larger than

the number of observations. The proof is quite straight forward. In STM, νi,j is

drawn from a PDP with base measure µi, which itself is drawn from a Dirichlet

distribution. Therefore, the base measure is discrete. See Property 2.5, the mean

and variance of νi,j are

E[νi,j] = µi ; V[νi,j] =
1− a
1 + b

(
diagonal(µi)− µiµ

†
i

)
. (5.9)

1I have changed some notations from the original papers to make them consistent with those

used in STM.
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Figure 5.3: The latent Dirichlet co-clustering model

We can see that if b → ∞, the variance approaches zero, so νi,j is almost

equal to µi. Now drawing topics from νi,j can be equivalent to drawing topics

directly from µi, which makes STM become LDA. It can also be proven by

observing the conditional distribution given by Equation (2.10). If b → ∞, the

probability of customers choosing an occupied table approaches zero. These mean

each customer will choose a new table to sit at and each table will just have

one customer. Thus, there are Ti,j approaching Ni,j and n∗i,j,k approaching t∗i,j,k
for all k’s. Therefore, the ratios of Pochhammer symbols and the values of the

Stirling numbers in Equation (5.2) become one. Taking out the two products over

Pochhammer symbols and Stirling numbers from Equation (5.2), we can see that

the marginal distribution of STM is the same as that of LDA (see Equation (4.2)).

5.5.2 Latent Dirichlet Co-clustering

LDCC is a four-level probabilistic model, as STM. It tries to extend LDA by

assuming documents are random mixtures over document-topics, each of those

topics is characterised by a distribution over segments; and segments are ran-

dom mixtures over word-topics, each word-topic is a distribution over words. The

two different kinds of topics are connected by hyper-parameters α, under the

assumption that each document-topic is a mixture of word-topics. It is a kind of

nested LDA, as shown in Figure 5.3. LDCC also assumes that each segment is

associated with only one document-topic (y in Figure 5.3), which is quite a strong

assumption in my view.

In contrast, STM allows documents and segments to share same latent top-

ics, rather than assuming two different kinds, as I believe a document and its
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segments should be generated from the same topic space. Moreover, STM relaxes

the assumption on segments by assuming each segment still has a topic distri-

bution drawn from its document topic distribution. Thus, each segment can also

exhibit multiple topics, which includes the case that it has only one topic, if the

distribution highly concentrates on one topic. In this sense, STM does not make

the strong assumptions, as LDCC does.

5.6 Experimental Results

I implemented the three models in C, and ran them on a desktop with Intel(R)

Core(TM) Quad CPU (2.4GHz), although the codes are not multi-threaded. The

training time, for instance, on the NIPS dataset with 100 topics and 1000 Gibbs

iterations is approximately 5 hours for LDA, 33 hours for LDCC and 20 hours for

STM. In subsequent sections, I report the following sets of experimental results:

The in depth study of characteristics of STM I first discuss the experimen-

tal results on two patent datasets (G06-1000 and G06-990) to analyse topic

variability among segments. The goal of this set of experiments is to study

how the concentration parameter b and the discount parameter a can influ-

ence topic proportions.

Perplexity comparisons I then compare STM with LDA and LDCC in terms

of per-word predictive accuracy on unseen documents. Besides the afore-

mentioned two patent datasets, the three models are further applied to

another two patent datasets (A-1000 and F-1000), the NIPS datasets2, and

an extract from the Reuters RCV1 corpus [Lewis et al., 2004]. The perplex-

ity comparisons on held-out testing documents evidently demonstrate the

advantage of STM over the other two models.

5.6.1 Data Sets and Evaluation Criteria

The two patent datasets, G06-1000 and G06-990, are randomly selected from

5000 U.S. patents3 granted between Jan. and Mar. 2009 under the class “com-

puting; calculating; counting” with international patent classification (IPC) code

G06. Patents in G06-1000 are split into paragraphs according to the original

2It is available at http://nips.djvuzone.org/txt.html
3All patents are from Cambia, http://www.cambia.org/daisy/cambia/home.html
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structure. Patents in G06-9904 are split into sentences with a Perl package (Lin-

gua::En:Sentence). All stop-words, extremely common words (e.g., top 40 for

G06-1000), and less common words (i.e., words appear in less than 5 documents)

have been removed. This leads to a vocabulary size of 10385 unique words in G06-

1000 and 11518 in G06-990. The G06-1000 dataset contains 1,000 patents, 60,564

paragraphs, and 2,513,087 words. The G06-990 dataset contains 990 patents,

249,102 sentences, and 2,832,364 words. Paragraphs or sentences are treated as

segments, and 80% of each dataset are hold out for training and 20% for testing.

In order to evaluate the generalisation capability of these models to unseen

data, perplexity is computed, which is a standard measure for estimating the

performance of probabilistic language models. The perplexity of a collection Dtest
of I test documents that is defined as:

perplexity(Dtest) = exp
{
−
∑I

i=1 ln p(wi)∑I
i=1 Ni

}
(5.10)

where wi indicates all words in document i, and Ni indicates the total number of

words in i. A lower perplexity over unseen documents means better generalisation

capability. In the following experiments, it is computed based on the held-out

method introduced by Rosen-Zvi et al. [2004]. In order to calculate the likelihood

of each unseen word in STM, we need to compute the document topic probability

vector µ, the segment topic probability vector ν, and word probability matrix

Φ. Here, I estimate them using a Gibbs sampler and Equations (5.5), (5.6) and

(5.7) for each sample of assignments z, t.

5.6.2 Topic Variability Analysis among Segments

I first investigate the variability between topic proportions (i.e., distributions)

of documents and those of their segments. As I discussed in Section 5.3, it is

modelled by the PDP with two parameters, a and b. Here I present studies on

how a and b act on the diversity among document topic proportions (i.e., µi) and

their segment topic proportions (i.e., νi,j).

The standard deviation is used to measure the variation of νi,j, and entropy

to show the expected number of topics in either documents or segments. The

prior mean and variance of νi,j have been given in Equations (5.9). For all figures

in this section, STM P and STM S indicate STM running on paragraphs (G06-

1000) and sentences (G06-990) respectively; STM P mu and STM S mu indicate

4I randomly selected 1000 patents, but 10 were deleted after pre-processing, because they

were too small.
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entropies computed based on µ, and STM P nu and STM S nu denote those

computed based on ν.

Study of the Concentration Parameter b

The purpose of this set of experiments is to investigate how b influences topic

proportions after isolating the effect of a. In the experiments, I fix a = 0.2 for the

G06-1000 dataset and a = 0 for the G06-990 dataset, change b from 0.1 to 300.0,

and then run STM on those two datasets with k = 50 and α = 0.5. As shown

in Figure 5.4(a), the standard deviation decreases while b is increasing. When

b is small, the variance of topic proportions in segments is large. Hereby, the

topic proportion νi,j of a segment could be quite different from the topic pro-

portion µi of the corresponding document, as indicated in Figure 5.4(b) by the

different expected number of topics. In contrast, when b gets quite large, the

variance of segment topic proportions becomes small. Figure 5.4(b) shows the

expected number of topics in each segment gets close to the number of topics in

the corresponding document. In this case, there could be no difference between

a document topic proportion and its segment topic proportions, and segments

loose their specificity on topics. We can observe that the perplexity turns out

to be larger when b is quite small or quite large in Figure 5.6(a). Consequently,

we can conclude that the topic deviation between a document and its segments

should be neither too small nor too big, which somehow complies with the way

in which people structure ideas in writing.

Study of the Discount Parameter a

To study how a influences topic proportions, I ran another set of experiments on

the two patent datasets by fixing b to 10 and changing a from 0.0 to 0.9. According

to Equations (5.9), the variance of segment topic distribution gets small while a

is getting large, given b fixed.

I plotted the standard deviation in Figure 5.5(a), the entropy in Figure 5.5(b),

and perplexity in Figure 5.6(b). For the G06-990 dataset, while a is increasing,

the standard deviation decreases, and the expected number of topics in each seg-

ment gets close to the expected number of topics in the document. However, the

perplexity increases significantly when a changes from 0.6 to 0.9, which is also

observed in the G06-1000 dataset. It is interesting that both the standard devia-

tion and the entropy drop first and then increase for the G06-1000 dataset. Fig-

ure 5.6(b) shows there is no big difference while a is between 0 and 0.5. We may
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Figure 5.5: Standard deviation and entropy with b fixed
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conclude that the influence of a, especially a < 0.6, on topic proportions is not

significant when b is set to 10 on the two patent datasets.

Topic Proportion Examples

To further show topic variability among document topic proportion and its seg-

ment topic proportions, I plot as an example those topic proportions of a patent

from G06-1000 in Figure 5.7. They are extracted from an experiment with fol-

lowing settings: K = 50, a = 0.2, b = 10 and α = 0.5. This patent has 10

paragraphs, and talks about web authentication security systems for finance, as

indicated by four topics with the highest ratios in document topic distribution

mu in Figure 5.7. They are T-12, T-16, T-31 and T-44 in Table 5.3 (Note topic

numbers following “T-” correspond to topic indices in Figure 5.7.). As indicated

by the blue bars, segment topic proportions are variants of the document topic

proportion with different ratios for the four main topics. For example, the first

paragraph (see nu 1) covers all the four topics and topic T-15, it is indeed an

Table 5.3: 11 topic examples learnt by STM from the G06-1000 dataset

T-12 T-16 T-20 T-21 T-31 T-32

web systems path component key files

page performance tree management security volume

browser large nodes engine authentication copy

site required price electronic hash site

internet multiple paths applications keys update

pages problem decision modules encryption backup

content high failure external chip directory

report single period desktop encrypted local

users cost graph install protected delta

website typically model installation secure updates

T-37 T-42 T-44 T-46 T-47

value window card skilled state

threshold selected transaction understood event

segment displayed account patent error

maximum screen customer specific status

size view payment intended current

amount button terminal limited action

rang selection cards modifications recovery

determined box ic incorporated events

index select identification disclosed determines

equal text merchant detail routine
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Figure 5.7: Plots of topic distributions for a patent from G06-1000. Document

topic distribution mu is on the top, and the others are 10 segment topic distri-

butions, labeled with nu j, j ∈ {1, 2, . . . , 10}. The label of X-axis is topic which

is indexed from 1 to 50, the Y-axis is topic proportion.

introduction paragraph; the fifth paragraph (see nu 5) focuses on the interface

design, see topic T-42; and the seventh and the eighth paragraphs (see nu 7 and

nu 8) discuss more about technical issues of an authentication system. It can be

seen that STM can capture the variability among topic proportions.

5.6.3 Perplexity Comparison

I follow the standard way in topic modelling to evaluate the per-word predica-

tive perplexity of STM, LDA and LDCC. In the training procedure, each Gibbs

sampler is initialised randomly and runs for 500 burn-in iterations. Then a total

number of 5 samples are drawn at a lag of 100 iterations. These samples are

averaged to obtain the final trained model, as in [Li et al., 2007].

I set hyper-parameters fairly in order to make a scientific comparison, as they

are important to these models. Symmetric Dirichlet priors (i.e., α for LDA and

STM, δ for LDCC) were simply used in the following experiments, although we

can estimate them from data using, for instance, the Moment-Matching algorithm
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(b) Perplexity comparison on the G06-990

Figure 5.8: Perplexity comparisons on the G06-1000 and G06-990 datasets

proposed by Minka [2000]. With γ fixed to 200/W , I ran different settings of α

and δ (from 0.01 to 0.9) for different number of topics (i.e., 5, 10, 25, 50, 100, and

150), and empirically chose the optimal parameters for LDA and LDCC. It has

been observed, for example, LDA trained on α = 0.1 was always better on both

G06-1000 and G06-990 datasets than on other settings, but LDCC varied quite a

bit (e.g., δ = 0.9 for 25 word-topics, δ = 0.01 for 100 word-topics). The number of

document-topics in LDCC was fixed to 20 for all experiments and α was estimated

using the moment-match algorithm, as in [Shafiei and Milios, 2006]. I used α = 0.5

in STM for all the numbers of topics without tuning, and set a = 0.2 and b = 10

for both the G06-1000 dataset and the G06-990 dataset. When optimising b, I

set a = 0. Note that optimising the parameter settings for the two competitors

(LDA and LDCC) enables us to draw sound conclusions on the performance of

STM.

Figure 5.8(a) presents experimental results for these models on the G06-

1000 dataset. LDA has been run on document level (LDA D) and paragraph

level (LDA P) separately. It is interesting to see that LDA P is better than

LDA D. LDCC exhibits better performance than LDA D, but it is only com-

parable with LDA P. The paired t-test, shown in Table 5.4, gives p-value= 0.05

to the slight improvement. In contrast, STM (with or without sampling b using

the scheme presented in Section 5.4.3, indicated by STM and STM B respec-

tively) consistently performs better than all the other models. The advantage is

especially obvious for large numbers of topics. Table 5.5 shows the optimised b

values. The superiority of STM over LDA and LDCC is statistically significant

according to the paired t-test with p-values shown in the third and fourth columns

of Table 5.4.
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Table 5.4: P-values for paired t-test on two patent datasets

G06-1000 G06-990

LDCC STM STM B LDCC STM STM B

LDA D 7.0e-5 1.3e-3 5.4e-4 2.9e-2 4.8e-3 2.2e-3

LDA P/S 5.0e-2 1.5e-2 8.0e-3 3.9e-1 9.1e-3 6.3e-3

LDCC 3.9e-2 2.8e-2 1.1e-2 7.7e-3

Table 5.5: Optimised b values, when a = 0

K=5 K=10 K=25 K=50 K=100 K=150

G06-1000 1.53 1.89 2.46 2.92 3.42 3.54

G06-990 1.21 1.36 1.90 2.15 2.36 2.44

Similar comparison on the G06-990 dataset is shown in Figure 5.8(b). I ran

LDA (indicated by LDA S), LDCC and STM on the sentence level. The perplexity

of LDCC becomes slightly larger than LDA S when the number of topics is greater

than 50. It is comparable to LDA S, as LDCC v.s. LDA P in Figure 5.8(a). In-

terestingly, the performance of either LDA or LDCC on the sentence level turns

out to be much worse than LDA on the document level. However, the paired

t-test results in the last two columns of Table 5.4 show that STM is still signif-

icantly better than both LDA and LDCC. STM could certainly retain its good

generalisation capability even on sparse text on the segment level.

Evidently, the results illustrated in both Figure 5.8(a) and Figure 5.8(b)

demonstrate that STM can work remarkably well on both the paragraph level

and the sentence level.

5.6.4 Further Experiments

In order to further exhibit the advantage of STM, I also ran it on another two

patent datasets (A-1000 and F-1000), the NIPS dataset and an extract of the

Reuters dataset using a = 0 and sampling the concentration parameter b accord-

ing to the scheme in Section 5.4.3. Table 5.6 shows the optimised b values. The

Dirichlet prior α for LDA is optimised by using the method5 proposed by [Minka,

2000].

5The code is modified from the Minka’s Matlab code that is downloaded from http://

research.microsoft.com/en-us/um/people/minka/software/fastfit/
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Table 5.6: Optimised b values on the A-1000, the F-1000, the NIPS and the

Reuters datasets with a = 0.

K=5 K=10 K=25 K=50 K=100 K=150

A-1000 0.94 1.08 1.36 1.56 1.71 1.77

F-1000 1.64 2.10 2.75 3.31 3.99 4.49

NIPS 1.46 1.97 2.7 3.4 4.04 4.33

Reuters 2.98 3.54 3.17 2.26 1.50 1.20

Table 5.7: Dataset statistics

A-1000 F-1000 NIPS Reuters

Number of documents 1,000 1,000 1,629 2,640

Number of segments 78,653 55,149 174,747 38,182

Number of words 3,108,479 2,127,878 1,773,365 405,531

Vocabulary size 18,988 9,760 13,327 13,884
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Figure 5.9: Perplexity comparisons on the A-1000 and the F-1000 patent datasets

The two patent datasets, A-1000 and F-1000, are randomly selected from the

U.S. patents granted in 2010 with IPC code A (“human necessities”) and F (“me-

chanical engineering; lighting; heating; weapons; blasting”) respectively. All the

patents in the two datasets are split into paragraphs, as done for G06-1000. The

NIPS dataset is processed to remove bibliography material (everything after “Ref-

erences”) and header material (everything before “Abstract”); the Reuters ar-

ticles are extracted from 20-25/8/1996, and the articles in categories CCAT,

ECAT and MCAT are dropped. All the documents in the NIPS dataset and the
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Figure 5.10: Perplexity comparisons on the NIPS and the Reuters datasets

Reuters dataset are split into sentences. Table 5.7 shows the statistics of the four

datasets. Again 80% were used for training and 20% for testing. Perplexity re-

sults appear in Figures 5.9 and 5.10. It is interesting that the performance of LDA

running on the document level is slightly better than STM on Reuters articles. I

have observed that the average size of Reuter articles is about 150 words, but the

average sizes of documents in the other three datasets are much larger than the

size of Reuter articles. There are about 3100 words for A-1000, 2100 words for

F-1000 and 1100 words for NIPS, respectively.

5.7 Summary

In this chapter, I have presented a segmented topic model (STM) that directly

models the document structure with a four-level hierarchy. An effective collapsed

Gibbs sampling algorithm based on the CMGS has been developed. The ability

of STM to explore correlated segment topics (i.e., the latent subject structure of

a document buried in the document layout) has been demonstrated in the exper-

iments by the significant improvement in terms of per-word predictive perplexity

compared with the standard topic model (LDA) and previous segmented model

(LDCC). I also found that STM is approximately equal to LDA on quite short

documents.

The primary benefit of STM is that it allows us to simultaneously model

document topic distributions and segment topic distributions in the same latent

topic space, without separate runs as LDA or introducing different kinds of topics

as LDCC. Although the experiments I have done were just on either the paragraph
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level or sentence level, STM readily models other segments, like sections and

chapters. Moreover, the success of STM has indicated that it is beneficial to

consider the document structure directly in topic modelling. Although I think

the inference algorithm I proposed is good enough to test STM, it is still worth

exploring other inference algorithms, such as variational inference for Dirichlet

process mixture models [Blei and Jordan, 2005; Teh et al., 2008].
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Chapter 6

Sequential LDA Model

Understanding how topics within a document evolve over the structure of the

document is an interesting and potentially important problem in exploratory and

predictive text analytics. In this chapter, I address the problem of topic evolution

by presenting a novel variant of LDA: Sequential LDA (SeqLDA). This variant

directly considers the underlying sequential structure, i.e., a document consists

of multiple segments (e.g., chapters or paragraphs), each of which is correlated to

its antecedent and subsequent segments. Such progressive sequential dependency

is captured by using the HPDP (see Section 2.3.4). I also develop an effective

collapsed Gibbs sampling algorithm based on CMGS (see Section 3.3). SeqLDA

outperforms the standard LDA in terms of perplexity and yields a nicer sequential

topic structure than LDA in topic evolution analysis on several books such as

Melville’s ‘Moby Dick’.

This chapter is organised as follows. I briefly discuss the related work in Sec-

tion 6.2 after the introduction in Section 6.1. I then elaborate the derivation of

SeqLDA, and compare it with some related models in Section 6.3. Section 6.4 dis-

cusses the collapsed Gibbs sampling algorithm that samples from the posterior

of SeqLDA. In Section 6.6, I present experimental results on patents and several

books. Section 6.7 gives a brief discussion and concluding comments.

6.1 Introduction

As I discussed in the previous chapter, many documents in corpora come naturally

with structure. They consist of meaningful segments (e.g., chapters, sections, or

paragraphs), each of which contains a group of words, i.e., a document-segment-

word structure. STM proposed in Chapter 5 focuses on mapping a simple docu-

99
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1 2 J
。。。

μ0

μ μ μ

Figure 6.1: A subject structure modelled by SeqLDA. The node µ0 is the doc-

ument topic distribution, and the other nodes are the segment topic distribu-

tions. The subscripts of µ follow the order of segments in a document. The arrows

indicate dependencies.

ment structure to a hierarchical topic structure, as shown in Figure 5.1. It tries to

capture the hierarchical relationship between a document subject and the corre-

sponding segment subtopics. The benefit of incorporating the document structure

into topic modelling has been shown by the significantly better performance of

STM over LDA and LDCC. However, the underlying assumption of STM is that

segments in a document are exchangeable (i.e., given the document topic distri-

bution, the segment topic distributions are conditionally independent.). For the

problem of analysing how topics evolve over the document, the exchangeability

assumption is not suitable and needs to be removed to further incorporate topic

dependencies existing in the sequential document structure, i.e., the segment

sequence according to the document layout.

Here I take an essay as an example. It is composed of multiple paragraphs,

each of which is associated with a subtopic, as shown in Figure 1.1. All the

subtopics are combined in a way together to form the subject of the essay. This

document structure conveys two kinds of topic structures that are necessary for

writing a cohesive and easily accessible essay. The first kind of topic structure

is that subtopics are linked to the essay subject, which gives a topic hierarchy,

as shown in the right of Figure 5.1. Thus, paragraphs are organised according

to the topic hierarchy, and implicitly assumed to be exchangeable. In this chap-

ter, I am interested in the second kind of topic structure that subtopics are

linked sequentially according to the paragraph sequence (i.e. the original layout

of paragraphs). These linkages are indicated by arcs labeled with “link” in Fig-

ure 1.1. Now paragraphs are no longer exchangeable, and I believe the paragraph

sequence can provide some useful contextual information that can help to under-

stand the original text content. We can further use the contextual information to
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analyse how topics change within a document. Figure 6.1 shows a graphical rep-

resentation of the sequential topic structure according to the segment sequence

in a document.

As with STM, I adapt topic models for explicitly modelling the sequential

topic structure. In the context of topic modelling, both the subject of a document

and the subtopics of its segments can be modelled by distributions over the same

set of latent topics, each of which is a distribution over words. The sequential topic

structure is modelled through the probabilistic dependencies among the topic

distributions, as indicated by arrows in Figure 6.1. However, most of the existing

topic models are not aware of the underlying document subject structure. They

only consider one level, i.e., document-words, and usually neglect the contextual

information buried in the higher levels of document structure.

In SeqLDA, the progressive topic dependency is captured using a multi-level

extension of the HPDP, see Section 2.3.4. Thus, a segment topic distribution

can be recursively drawn from a PDP with a base distribution that is the topic

distribution of its preceding segment. Using the PDP chain of topic distributions

allows us to explore how topics are evolving among, for example, paragraphs

in an essay, or chapters in a novel; and to detect the rising and falling of a

topic in prominence. The topic evolution can be estimated by exploring how

topic proportions change in segments. Tackling topic modelling together with the

subject structure of a document provides a solution for going beyond the “bag-of-

words” assumption that is widely used in text analytics (e.g., natural language

processing and information retrieval).

6.2 Related Work

To capture topic evolution in temporal data, integrating time stamps into topic

models has been around for a while. Existing work focuses mainly on learning

topic evolution patterns from a time-varying corpus, instead of exploring how

topics progress within each individual document by following the latent topic

structure. These works explore how topics change, rise and fall, by considering

time stamps associated with document collections. In general, they can be put

into two categories, Markov chain based models and non-Markov chain based

models.

In the Markov chain based models, the dynamic behaviours (i.e., topic evolu-

tion in my perspective) are captured by state transitions. The state at time t+∆t
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is dependent on the state of t. For instance, the dynamic topic model (DTM) [Blei

and Lafferty, 2006b], the dynamic mixture model (DMM) [Wei et al., 2007], and

the dynamic extensions of HDP [Ren et al., 2008; Ahmed and Xing, 2010].

The DTM captures the topic evolution in document collections that are organ-

ised sequentially into several discrete time periods, and then within each period

an LDA model is trained on the documents. The Gaussian distributions are used

to tie a collection of LDAs by chaining the Dirichlet prior and the model param-

eters of each topic. Indeed, the parameter at time t− 1 is the expectation for the

distribution of parameter at time t, the idea of which is similar to that used in our

SeqLDA. Unfortunately, Gaussian distributions are not conjugate to multinomial

distributions, which results in complex approximation in inference.

The DMM assumes that the mixture of latent variables (i.e., topic distri-

bution) for all data streams is dependent on the mixture of the previous time

stamp, i.e., the expectation of topic distribution at time t is the topic distribu-

tion at time t − 1, as used in the DTM. Although the structure of the DMM is

similar to SeqLDA (i.e., both put first-order Markov assumption on topic distri-

butions), SeqLDA capitalises on the self-conjugacy1 of the PDP to chain a series

of LDAs, instead of using Dirichlet distributions. The problem with the Dirichlet

distribution is that it is not self-conjugate, which could not facilitate an effective

inference algorithm.

Recently, the HDP has been extended to incorporate time dependence to

model the time-evolving properties of temporal data, such as the dynamic HDP

(DHDP) [Ren et al., 2008]. As shown in Figure 2.2, the DHDP captures the time

dependence via a weighted mixture of two distributions drawn from the same

HDP, i.e., the distribution Gt at time t is equal to (1 − wt−1)Gt−1 + wt−1Ht−1,

where Gt−1 is the distribution at time t− 1, and Ht−1 is the innovation distribu-

tion. It is easy to see that Gt is modified from Gt−1 by the weighted mixture. See

Section 2.2.2 for detailed discussion. Compared to the DHDP, our SeqLDA takes

Gt−1 as the expectation of Gt, which is done by drawing Gt from a PDP with

base distribution Gt−1. The correlation of samples at adjacent times can be con-

trolled by adjusting the variance of the two distributions. Therefore, the difference

between the DHDP and SeqLDA resides in the way of handling the dynamic re-

lationship from Gt−1 to Gt.

Instead of assuming the Markovian dependence over time, the second class

1PDP is conjugate to itself when applied to the discrete data. Equation 3.6 shows that we

can recursively integrate out the real valued probability vectors (i.e., G) in the HPDP with an

auxiliary variable, i.e., table multiplicity.
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of models treats time as an observed variable that can be jointly generated with

words by latent topics, for example, the topics over time (ToT) model [Wang

and McCallum, 2006]. In the ToT, the topic over time is captured by a Beta

distribution. Drawing all time stamps from the same Beta distribution might not

be appropriate for, such as, stream data [Wei et al., 2007]. Some other approaches

are, for instance, He et al. [2009] developed inheritance topic model to understand

topic evolution by leveraging the citation information; Kandylas et al. [2008]

analysed the evolution of knowledge communities based on the clustering over

time method, called Streemer.

Significantly, the difference between these models and SeqLDA is that, in-

stead of modelling topic trends in document collections based on documents’

time stamps, SeqLDA models topic progress within each individual document

by using the correlations among segments, i.e., the underlying sequential topic

structure, according to the original document layout. The Markovian dependen-

cies are put on the topic distributions. In this way, we can directly model the

topical dependency between a segment and its successor.

Although one may argue that the models just discussed can also be adapted to

the individual document by treating the sequence of segments as time stamps, the

computation complexity and space complexity of those models could be signifi-

cantly increased with the growth of the latent variables and hyper-parameters. In

contrast, I use a single integrated model based on the HPDP, in which the real

valued parameters can be integrated out because PDP’s are self-conjugate .

6.3 SeqLDA Generative Process

Now I present the Sequential Latent Dirichlet Allocation model (SeqLDA) which

models how topics evolve over segments in individual documents. I assume that

there could be some latent sequential topic structure within each individual doc-

ument, i.e., topics within a document evolve smoothly from one segment to

another, especially in various books (e.g., novels). This assumption intuitively

originates from the way in which people normally organise ideas in their writ-

ing. Before specifying SeqLDA, I list notation and terminology used in this chap-

ter. Notation is given in Table 6.1. The terms and dimensions used in the SeqLDA

model are the same as those in STM, see Section 5.3. In this chapter I assume

segments are either paragraphs or chapters.

The basic idea of SeqLDA is to assume that each document i is a certain
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mixture of latent topics, denoted by a topic distribution µi,0, and is composed of

a sequence of meaningful segments; each of these segments also has a mixture over

the same set of latent topics as those for the document, and these are indicated

by a topic distribution µi,j for segment j. Obviously, both the document and its

segments share the same topic space. Notice that the index of a segment should

comply with its position in the original document layout, which means the first

segment is indexed by j = 1, the second segment is indexed by j = 2, and so

on. Both the subject of a document and subtopics of its segments are modelled

here by these distributions over topics. Take the book, called “The Prince”, as an

example. The whole book is treated as a document, each chapter is a segment in

the experiments carried out in Section 6.6. The theme of each chapter is simulated

by the distribution (i.e., µi,j) over latent topics. The linkage between theme is

modelled by the change among topic distributions.

The development of a sequential structured generative model according to the

above idea is based on the HPDP, and it models how the subtopic of a segment

is correlated to its previous and following segments. Specifically, the correlation

Table 6.1: List of notations used in SeqLDA

Notation. Description.

K number of topics

I number of documents

Ji number of segments in document i

Li,j number of words in document i, segment j

W number of words in dictionary

ai the discount parameter of the PDP

bi the concentration parameter of the PDP

α K-dimensional vector for the Dirichlet prior for document

topic distributions

µi,0 document topic distribution for document i

µi,j segment topic distribution for segment j in document i

Φ word probability vectors as a K ×W matrix

φk word probability vector for topic k, entries in Φ

γ W -dimensional vector for the Dirichlet prior for each φk
wi,j,l word in document i, segment j, at position l

zi,j,l topic for word in document i, segment j, at position l
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Figure 6.2: SeqLDA

is simulated by the progressive dependency among topic distributions. That is,

the jth segment topic distribution µi,j is the base distribution of the PDP for

drawing the (j + 1)th segment topic distribution µi,j+1; for the first segment, its

topic distribution µi,1 is drawn from the PDP with document topic distribution

µi,0 as the base distribution. The concentration parameter bi and discount param-

eter ai control the variation between the adjacent topic distributions. Figure 6.2

shows the graphical representation of SeqLDA. Shaded and unshaded nodes indi-

cate observed and latent variables respectively. An arrow indicates a conditional

dependency between variables, and plates indicate repeated sampling.

In terms of a generative process, SeqLDA can also be viewed as a probabilistic

sampling procedure that describes how words in documents can be generated

based on the latent topics. It can be depicted as follows: Step 1 samples the word

distributions for topics, and Step 2 samples each document by breaking it up into

segments:

1. For each topic k in {1, . . . , K},

(a) Draw φk ∼ DirW (γ)

2. For each document i in {1, . . . , I}

(a) Draw µi,0 ∼ DirK(α)

(b) For each segment j ∈ {1, . . . , Ji}
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i. Draw µi,j ∼ PDP(ai, bi,µi,j−1)

ii. For each word wi,j,l, where l ∈ {1, . . . , Li,j}
A. draw zi,j,l ∼ DiscreteK(µi,j)

B. draw wi,j,l ∼ DiscreteW (φzi,j,l).

Like STM, the number of topics (i.e., the dimensionality of the Dirichlet dis-

tribution) is assumed to be known and fixed (i.e., K), and the word probabilities

are parameterised by a K ×W matrix Φ = (φ1, ...,φK), and will be estimated

through the learning process. µi,0 is sampled from the Dirichlet distribution with

prior α, and others are sampled from the PDP. Both the Dirichlet distribution

and the PDP are conjugate priors for the multinomial distribution, and the PDP

is also self-conjugate. Choosing these conjugate priors makes the statistical infer-

ence easier, as discussed in Section 6.4. The joint distribution of all observed and

latent variables can be constructed directly from Figure 6.2 using the distributions

given in the above generative process, as follows:

p(µi,0,µi,1:Ji
, z,w|α,Φ, ai, bi)

= p(µi,0|α)

Ji∏
j=1

p(µi,j|ai, bi,µi,j−1)

Lj∏
l=1

p(zi,j,l|µi,j)p(wi,j,l|φzi,j,l)

 , (6.1)

where p(µi,j|ai, bi,µi,j−1) is given by PDP(ai, bi,µi,j−1).

From the notion of the proposed model, we can find the obvious distinction

between SeqLDA and LDA (shown in Figure 4.1): SeqLDA takes into account the

sequential structure of each document, i.e., the segment sequence in a document

that LDA ignores. SeqLDA aims to use the information conveyed in the docu-

ment layout, to capture how topics evolve within a document. Although LDA can

also be applied to segments directly, the progressive topical dependency between

two adjacent segments could be lost by treating segments independently. LDCC

[Shafiei and Milios, 2006], shown in Figure 5.3, has an implicit assumption that

segments within each document are exchangeable, which is not always appro-

priate, so does STM proposed in Chapter 5. Furthermore, assigning just one

topic to each segment in LDCC cannot capture the evolution of each topic de-

picted in the document. Like SeqLDA, STM assumes each segment has a topic

distribution, and each segment topic distribution is drawn from document topic

distribution via a PDP. As discussed earlier in Section 6.1, STM is developed

to explore only the hierarchical relationship between a document subject and its

segment subtopics. The exchangeability assumption imposed by STM may make

it unsuitable for describing the sequential topic structure.
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Thus, if documents indeed have some latent sequential structure, considering

this dependency means a higher fidelity of SeqLDA over LDA and LDCC. How-

ever, if the correlation among subtopics of some adjacent segments is not obvious,

taking the topic distribution of the jth segment as the base distribution of the

(j + 1)th segment may mis-interpret the document topic structure. In this sense,

SeqLDA may be a deficient generative model, but it is still a useful model and

remains powerful if the progressive dependency is dynamically changed by op-

timising concentration and discount parameters (a and b) for each individual

segment within each document. In all the reported experiments, I ran one set of

experiments with fixed a and b for each corpus, and another set of experiments

with a fixed but b optimised for each document i (i.e., bi).

6.4 Inference Algorithm via CMGS

In this section, I derive the collapsed Gibbs sampling algorithm for doing infer-

ence, and parameter estimation in the proposed model. Collapsed Gibbs sampling

take advantage of the conjugacy of priors to compute the conditional posteri-

ors. Thus, it always yields relatively simple algorithms for approximate inference

in high-dimensional probability distributions. Note that I use conjugate priors in

SeqLDA, i.e., Dirichlet prior α on µ0 and γ on Φ, the PDP prior on µj; thus

µ0:J and Φ can be integrated out. Although the proposed sampling algorithm

does not directly estimate µ0:J and Φ, I will show how they can be approximated

using the posterior sample statistics.

Table 6.2 lists all the statistics required in the proposed algorithm. The Se-

qLDA sampling is a collapsed version of what is known as the nested Chinese

restaurant process (CRP) used as a component of different topic models [Blei

et al., 2010].

6.4.1 Model Likelihood

To derive a collapsed Gibbs sampler for the above model, we need to compute the

marginal distribution over the observation w, the corresponding topic assignment

z, and the table multiplicities t∗. We do not need to include, i.e., can integrate

out, the parameter sets µ0:J and Φ, since they can be interpreted as statistics

of the associations among w, z and t∗. Hence, we can first recursively apply

Equation (3.6) (the joint posterior of HPDP, see Section 3.3) to integrating out
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the segment topic distributions µi,1:J from Equation (6.1) as follows.

p(z1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J ,µ1:I,0 |α,γ,Φ,a1:I , b1:I)

=
I∏
i=1

p(µi,0 |α)

Ji∏
j=1

∫
p(µi,j | ai, bi,µi,j−1)︸ ︷︷ ︸
µi,j ∼PDP (ai,bi,µi,j−1)

Li,j∏
l=1

p(zi,j,l |µi,j)p(wi,j,l |φzi,j,l) dµi,j

=
I∏
i=1

((
1

BetaK(α)

K∏
k=1

µαk−1
i,0,k

)
Ji∏
j=1

(
(bi|ai)Ti,j

(bi)Ni,j+Ti,j+1

K∏
k=1

S
ni,j,k+t∗i,j+1,k

t∗i,j,k,ai

)
K∏
k=1

µ
t∗i,1,k
i,0,k

)
K∏
k=1

W∏
w=1

φ
Mi,k,w

k,w

=
I∏
i=1

((
1

BetaK(α)

K∏
k=1

µ
αk+t∗i,1,k−1

i,0,k

) Ji∏
j=1

(
(bi|ai)Ti,j

(bi)Ni,j+Ti,j+1

K∏
k=1

S
ni,j,k+t∗i,j+1,k

t∗i,j,k,ai

))
K∏
k=1

W∏
w=1

φ
Mi,k,w

k,w , (6.2)

Table 6.2: List of statistics used in SeqLDA

Statistic. Description.

Mi,k,w topic by word total sum in document i, the number of

words with dictionary index w and topic k, i.e., Mi,k,w =∑Ji
j=1

∑Li,j
l=1 1zi,j,l=k1wi,j,l=w.

Mk,w Mi,k,w totalled over documents i, i.e.,
∑I

i=1Mi,k,w

M k vector of W values Mk,w

ni,j,k topic total in document i and segment j for topic k, i.e.

ni,j,k =
∑Li,j

l=1 1zi,j,l=k. It is the total number of customers in

the CRP that arrive by themselves, rather than being sent by

the child restaurant.

Ni,j topic total sum in document i and segment j, i.e.,
∑K

k=1 ni,j,k

t∗i,j,k table count in the CRP for document i and segment j,

for topic k. This is the number of tables active for the k-

th value. Necessarily, t∗i,j,k ≤ n∗i,j,k and t∗i,j,k > 0 whenever

t∗i,j,k > 0. In particular, if n∗i,j,k = 1 then t∗i,j,k = 1.

Ti,j total table count in the CRP for document i and segment j,

i.e.
∑K

k=1 t
∗
i,j,k.

t∗i,j table count vector, i.e., (t∗i,j,1, ..., t
∗
i,j,K) for segment j.

ui,k the smallest segment index j′ in i, where t∗i,j′,k = 0.
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where t∗i,j,k ≤ ni,j,k + t∗i,j+1,k and t∗i,j,k = 0 iff ni,j,k + t∗i,j+1,k = 0; BetaK (α) is a K

dimensional beta function that normalises the Dirichlet; (x)N is given by (x|1)N ,

and (x|y)N denotes the Pochhammer symbol (see Section 3.1 for its definition);

SNM,a is the generalised Stirling number (see Section 3.3). Figure 3.4 shows how

the segment level topic distributions can be marginalised out in a recursive way

to yield Equation 6.2.

Finally, integrate out the document topic distributions µi,0 and the topic-word

matrix Φ, as is usually done for collapsed Gibbs sampling in topic models. The

joint distribution of z1:I , w1:I , t
∗
1:I,1:Ji

is

p(z1:I ,w1:I , t
∗
1:I |α,γ,a1:I , b1:I)

=
I∏
i=1

(
BetaK (α+ ti,1)

BetaK (α)

Ji∏
j=1

(
(bi|ai)Ti,j

(bi)Ni,j+Ti,j+1

K∏
k=1

S
ni,j,k+t∗i,j+1,k

t∗i,j,k,ai

))
∏
k

BetaW (γ +M k)

BetaW (γ)
. (6.3)

6.4.2 The Collapsed Gibbs sampler

In each cycle of the Gibbs sampling algorithm, a subset of variables are sampled

from their conditional distributions with values of all the other variables given. In

SeqLDA, distributions that we need to sample from are the posterior distributions

of topics (z), and table counts (t∗), given a collection of documents. Since the full

joint posterior distribution is intractable and difficult to sample from, in each cycle

of Gibbs sampling we will sample respectively from two conditional distributions:

1) the conditional distribution of topic assignment (zi,j,l) of a single word (wi,j,l)

given topic assignments for all the other words and all the table counts; 2) the

conditional distribution of table count (t∗i,j,k) of the current topic given all the

other table counts and all the topic assignments. In particular, the sampling

strategy adopted here is CMGS discussed in Section 3.3. Notice that sampling

table counts from the latter can be taken as a stochastic process of rearranging

the seating plan of a Chinese restaurant in the CRP.

In SeqLDA, documents are indexed by i, segments of each document are in-

dexed by j according to their original layout, and words are indexed by l. Thus,

with documents indexed by the above method, we can readily yield a Gibbs sam-

pling algorithm for SeqLDA: for each word, the algorithm computes the probabil-

ity of assigning the current word to topics from the first conditional distribution,

while topic assignments of all the other words and table counts are fixed. Then

the current word would be assigned to a sampled topic, and this assignment will
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be stored while the Gibbs sampling cycles through other words. While scanning

through the list of words, we should also keep track of table counts for each

segment. For each new topic that the current word is assigned to, the Gibbs sam-

pling algorithm estimates the probabilities of changing the corresponding table

count to different values by fixing all the topic assignments and all the other

table counts. These probabilities are computed from the second conditional dis-

tribution. Then, a new value will be sampled and assigned to the current table

count. Note that the values of the table count should be subject to some con-

straints that I will discuss in detail when deriving the two conditional distribu-

tions. Consequently, the aforementioned two conditional distributions need to be

computed are, respectively,

1. p(zi,j,l = k | z−zi,j,l1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J ,α,a1:I , b1:I),

2. p(t∗i,j,k | z1:I,1:J ,w1:I,1:J , t
∗−t∗i,j,k
1:I,1:J ,α,a1:I , b1:I),

where zi,j,l = k indicates the assignment of the lth word in the jth segment of doc-

ument i to topic k, z
−zi,j,l
1:I,1:J presents all the topic assignments not including the lth

word, and t
∗−t∗i,j,k
1:I,1:J denotes all the table counts except for the current table count

t∗i,j,k. Before elaborating the derivation of these two distributions, I discuss con-

straints on the table count (t∗i,j,k) and the word count (ni,j,k) for each topic. Fol-

lowing the CRP formulation (see Chapter 3), customers are words, dishes are

topics and restaurants are segments. All restaurants share a finite number of

dishes, i.e., K dishes. From Equation (6.3) and also seen from Equation (3.6) in

Section 3.3, tables of the (j + 1)th restaurant are customers of the jth restaurant

in hierarchical CRPs, as depicted in Figure 3.4. These counts have to comply

with the following constraints:

1. t∗i,j,k = 0 if and only if ni,j,k + t∗i,j+1,k = 0;

2. t∗i,j,k > 0 if either ni,j,k > 0 or t∗i,j+1,k > 0;

3. ni,j,k + t∗i,j+1,k ≥ t∗i,j,k ≥ 0.

For instance, the third constraint says that the total number of occupied tables

serving the kth dish must be less than or equal to the total number of customers

eating this dish. That is because each occupied table must at least have one

customer. Handling the constraints on all the table counts t∗i,j,k is the key challenge

in the development of the collapsed Gibbs algorithm.
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Considering the procedure of sampling a new topic for a word wi,j,l, we need to

remove the current topic (referred to as old topic) from the statistics. Assume the

value of old topic zi,j,l is k, the number of words assigned to k in the jth segment

of document i, ni,j,k, should decrease by one; then recursively check the table

count t∗i,j′,k for 1 ≤ j′ ≤ j according to the above constraints, and remove one

if needed to satisfy the constraints, this check will proceed until somewhere the

constraints hold; and finally assign the smallest j′ to ui,k where the first constraint

holds. Similarly, the same process should be done when assigning the current word

to a new topic. It is easy to prove, by recursion, that no t∗i,j,k goes from zero to

non-zero or vice versa unless an ni,j,k does, so we only need to consider the case

where ni,j,k + t∗i,j+1,k > 0. Moreover, the zero t∗i,j,k forms a complete suffix of the

list of segments, so t∗i,j,k = 0 if and only if ui,k ≤ j ≤ Ji for some ui,k.

Now, beginning with the joint distribution, Equation (6.3), using the chain

rule, and taking into account all cases, we can obtain the final full conditional

distribution

p(zi,j,l = k | z−zi,j,l1:I,I:J ,w1:I,1:J , t
∗
1:I,1:J ,α,a1:I , b1:I)

=
p(z1:I,1:J ,w1:I,1:J , t

∗
1:I,1:J |α,a1:I , b1:I)

p(z
−zi,j,l
1:I,1:J ,w1:I , t

∗
1:I,1:J |α,a1:I , b1:I)

with three different cases according to the value of ui,k as follows.

When ui,k = 1, which means all the table counts t∗i,j′,k for 1 ≤ j′ ≤ Ji are zero,

p(zi,j,l = k | z−zi,j,l1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J ,α,a1:I , b1:I) (6.4)

=

(
αk + t∗i,1,k

)
(bi + aiTi,1)∑K

k=1

(
αk + t∗i,1,k

) j∏
j′=2

(
bi + aiTi,j′

bi +Ni,j′−1 + Ti,j′

)
γwi,j,l +Mk,wi,j,l∑W
w=1(γw +Mk,w)

.

When 1 < ui,k ≤ j, which means all the table counts t∗i,j′,k for ui,k ≤ j′ ≤ Ji

are zero, the conditional probability is

p(zi,j,l = k | z−zi,j,l1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J ,α,a1:I , b1:I)

=

j∏
j′=ui,k

(
bi + aiTi,j′

bi +Ni,j′−1 + Ti,j′

) S
ni,ui,k−1,k+1

t∗i,ui,k−1,k,ai

S
ni,ui,k−1,k

t∗i,ui,k−1,k,ai

γwi,j,l +Mk,wi,j,l∑W
w=1(γw +Mk,w)

. (6.5)

When j < ui,k, which means the current table count t∗i,j,k > 0 (no recursive

check), it is simplified to

p(zi,j,l = k | z−zi,j,l1:I,1:J ,w1:I,1:J , t
∗
1:I,1:J ,α,a1:I , b1:I)

=
S
ni,j,k+1+t∗i,j+1,k

t∗i,j,k,ai

S
ni,j,k+t∗i,j+1,k

t∗i,j,k,ai

γwi,j,l +Mk,wi,j,l∑W
w=1(γw +Mk,w)

. (6.6)
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After sampling the new topic for a word, we need to stochastically sample the

table count for this new topic, say k. Although we have summed out the specific

seating arrangements (i.e., different tables and specific table assignments) of the

customers in the collapsed Gibbs sampler, it is still needed to sample how many

tables are serving the kth dish (i.e., topic k in SeqLDA), given the current number

of customers (i.e., words) eating the kth dish. If ni,j,k + t∗i,j+1,k > 1, the value of

t∗i,j,k should be in the following interval:

t∗i,j,k ∈
[

max
(
1, t∗i,j−1,k − ni,j−1,k

)
, ni,j,k + t∗i,j+1,k

]
.

Thus, given the current state of topic assignment of each word, the conditional

distribution for table count t∗i,j,k can be obtained by similar arguments, as follows.

p(ti,j,k | z1:I,1:J ,w1:I,1:J , t
∗−t∗i,j,k
1:I,1:J ,α,a1:I , b1:I) (6.7)

=
p(z1:I,1:J ,w1:I,1:J , t

∗
1:I,1:J |α,a1:I , b1:I)

p(z1:I,1:J ,w1:I,1:J , t
∗−t∗i,j,k
1:I,1:J |α,a1:I , b1:I)

∝

 Γ
(
αk + t∗i,1,k

)
Γ
(∑K

k=1

(
αk + t∗i,1,k

))
δj,1S

ni,j−1,k+t∗i,j,k
t∗i,j−1,k,ai

(bi)Ni,j−1+Ti,j

1−δj,1

(bi|ai)Ti,jS
ni,j,k+t∗i,j+1,k

t∗i,j,k,ai
.

The collapsed Gibbs sampling algorithm for SeqLDA is outlined in Algo-

rithm 5. This algorithm is started by randomly assigning words to topics in

[1, . . . , K], and if the total number of customer, ni,j,k + t∗i,j+1,k, is greater than

zero, the table count t∗i,j,k is initialised to 1. Each Gibbs circle then applies Equa-

tions (6.4), (6.5) or (6.6) to every word in the document collection; and applying

Equation (6.7) to each table count. Note Steps 18 and 19 will be detailed in Sec-

tion 6.5. A number of initial samples, i.e., samples before burn-in period, have to

be discarded. After that, the Gibbs samples should theoretically approximate the

target distribution (i.e., the posterior distribution of topics (z), and table counts

(t)). Now, a number of Gibbs samples are drawn at regularly spaced intervals. In

experiments discussed in Section 6.6, I averaged these samples to obtain the fi-

nal sample, as done in [Rosen-Zvi et al., 2004]. This collapsed Gibbs sampling

algorithm is easy to implement and requires little memory.

6.4.3 Estimating Topic/Word Distributions

Now, we can easily estimate the topic distribution µ and topic-word distribution

Φ, from statistics obtained after the convergence of the Markov chain. They can
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Algorithm 5 Collapsed Gibbs sampling algorithm for SeqLDA

Require: a, b, α, γ, K, Corpus, MaxIteration

Ensure: topic assignments for all words and all table counts

1. Topic assignment initialisation: randomly initialise the topic assignment for

all words.

2. Table count initialisation: randomly initialise all t∗i,j,k s.t. 0 ≤ t∗i,j,k ≤ ni,j,k +

t∗i,j+1,k

3. Compute statistics listed in Table 6.2

4. for iter ← 1 to MaxIteration do

5. foreach document i do

6. foreach segment j in i, according to the original layout do

7. foreach word wi,j,l in j do

8. Exclude wi,j,l, and update the statistics with current topic k′ = zi,j,k

removed

9. Recursively check all table counts, t∗i,j′,k′ , where 1 ≤ j′ ≤ j, to make

sure 0 ≤ t∗i,j′,k′ ≤ ni,j′,k′ + t∗i,j′+1,k′ holds;

10. Look for the smallest 1 ≤ j′ ≤ j, s.t. t∗i,j′,k′ = 0, and assign it to

ui,k′

11. Sample new topic k for wi,j,l using Equations (6.4), (6.5) or (6.6)

depending on the value of ui,k

12. Update the statistics with the new topic, and also update the value

of ui,k if needed

13. Remove the current table count t∗i,j,k from the statistics

14. Sample new table count t∗i,j,k for the new topic k using Equation (6.7)

15. Update the statistics with the new table count

16. end for

17. end for

18. Update α by Newton-Raphson method

19. Sample bi with adaptive rejection sampling

20. end for

21. end for
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be approximated from the following mean posterior expected values (using the

mean of a Dirichlet distribution (see Property 2.1) and the mean of the PDP (see

Property 2.5)) via sampling. For the document topic distribution µi,0, we have

µ̂i,0,k = Ezi,1:Ji ,t∗i,1:Ji |wi,1:Ji ,α,γ,ai,bi
[

αk + t∗i,0,k∑K
k=1

(
αk + t∗i,0,k

)]. (6.8)

And the segment topic distribution µi,j (1 ≤ j ≤ Ji) can be estimated as

µ̂i,j,k = (6.9)

Ezi,1:Ji ,t∗i,1:Ji |wi,1:Ji ,α,γ,ai,bi
[

aiTi,j + bi
bi +Ni,j + Ti,j+1

µi,j−1,k +
(ni,j,k + t∗i,j+1,k)− ait∗i,j,k

bi +Ni,j + Ti,j+1

]
.

Then, the topic-word distribution is given by

φ̂k,w = Ez1:I,1:J ,t1:I,1:J |w1:I,1:J ,α,γ,a,b

[
γw +Mk,w∑W

w′=1(γw′ +Mk,w′)

]
. (6.10)

6.5 Estimating Hyper-parameters

Since the PDP is quite sensitive to the concentration parameters (i.e., b1:I), which

has been observed in our initial experiments, also see Section 5.6.2, I thus propose

an algorithm to sample bi for each documents using the Beta/Gamma auxiliary

variable trick, as those in [Du et al., 2010b; Teh, 2006a]. The sampling routine is

based on the joint distribution Equation (6.3).

First let us consider the case when the discount parameter ai = 0, which is

same to what has been discussed in Section 5.4.3. The posterior for bi is propor-

tional to
Ji∏
j=1

b
Ti,j
i Γ(bi)

Γ(bi +Ni,j + Ti,j+1)
.

Now I introduce an auxiliary variable qi,j ∼ Beta(bi, Ni,j+Ti,j+1) for each segment

i, j. Then the joint posterior distribution for qi,j and bi is proportional to

b
∑Ji
j=1 Ti,j

i

Ji∏
j

qbi−1
i,j (1− qi,j)Ni,j+Ti,j+1−1 . (6.11)

Given sampled values of all the auxiliary variables, we can sample bi according

to their conditional distributions,

qi,j ∼ Beta(bi, Ni,j + Ti,j+1)

bi ∼ Gamma

(
Ji∑
j=1

Ti,j,

Ji∑
j=1

log(1/qi,j)

)
.
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For the case when ai > 0, the sampling scheme become a bit more elaborate. Now

the posterior for bi is proportional to

a
∑Ji
j Ti,j

i

∏
j

Γ(bi/ai + Ti,j)

Γ(bi/ai)

Γ(bi)

Γ(bi +Ni,j + Ti,j+1)
.

Introducing the same auxiliary variables, as those for a = 0, we can yield a joint

posterior distribution proportional to

a
∑Ji
j Ti,j

i

Ji∏
j

Γ(bi/ai + Ti,j)

Γ(bi/ai)
qbi−1
i,j (1− qi,j)Ni,j+Ti,j+1−1. (6.12)

It is easy to show that the above distribution is log concave in bi, so I here adopt

an adaptive rejection sampling algorithm [Gilks and Wild, 1992]. Sampling the

concentration parameter b allows a different value for each document, even for

each segment with only a slight modification of Equations (6.11) and (6.12). In

addition, although I did not study the discount parameter ai in this chapter, it

could also be optimised or sampled.

Instead of using symmetric Dirichlet priorα, we can use an asymmetric Dirich-

let prior whose components have to be estimated. As argued by Wallach et al.

[2009], the use of asymmetric prior on µi,0 could lead to a significant performance

improvement. Algorithms for estimating Dirichlet priors proposed in the liter-

ature are based on either maximum likelihood or maximum a posteriori, such

as the Moment-Matching and the Newton-Raphson iteration. Here, I adopt the

Newton-Raphson method following the early work by Minka [2000]. According to

Equation (6.3), the gradient of the log-likelihood is

∂f(α)

∂αk
=

I∑
i=1

(
Ψ

(
K∑
k=1

αk

)
−Ψ

(
K∑
k=1

(αk + ti,1,k)

))

+
I∑
i=1

(Ψ (αk + ti,1,k)−Ψ (αk)) ,

where Ψ(·) is known as the digamma function that is the first derivative of log

gamma function, and f(α) is the model log likelihood parameterised with α,

f(α) ∝ log

(
I∏
i=1

BetaK (α+ ti,1)

BetaK (α)

)
.
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Then, the Hessian of the log-likelihood is

∂f(α)

∂α2
k

=
I∑
i=1

(
Ψ′

(
K∑
k=1

αk

)
−Ψ′

(
K∑
k=1

(αk + ti,1,k)

))

+
I∑
i=1

(Ψ′ (αk + ti,1,k)−Ψ′ (αk))

∂f(α)

∂αk ∂αk′
=

I∑
i=1

(
Ψ′

(
K∑
k=1

αk

)
−Ψ′

(
K∑
k=1

(αk + ti,1,k)

))
where k 6= k′ ,

and Ψ′(·) is the trigamma function, i.e., the second derivative of gamma func-

tion. Now, a Newton iteration can be computed to optimise Dirichlet prior α. In

the reported experiments, I interchangeably upgrade b and α after each main

Gibbs sampling iteration. For example, I optimise α for the first 300 iterations

with b fixed; then, optimise b for the next 300 iterations with α fixed, and so

on. As we can see, I adopt a more greedy approach to optimise the two parameters

simultaneously, which may not give a global optimum.

6.6 Experimental Results

I implemented LDA, LDCC and SeqLDA in C, and ran them on a desktop

with Intel(R) Core(TM) Quad CPU (2.4GHz), even though my code is not

multi-threaded. The experiment environment is the same as the environment for

STM. The previous experimental results, presented in STM, show that, LDCC

performs quite similarly to LDA working on the segment level in terms of docu-

ment modelling accuracy. On the other hand, LDCC is not designed to uncover

sequential topic structure either, neither does STM. Thus, I compare SeqLDA

directly with LDA working on both the document and the segment levels to

facilitate easy comparison.

In this section, I first discuss the perplexity (see Equation 5.10) comparison

between SeqLDA and LDA on a patent dataset. The held-out perplexity measure

[Rosen-Zvi et al., 2004] is employed to evaluate the generalisation capability to the

unseen data. Then, I present topic evolution analysis on two books, available at

http://www.gutenberg.org. The former will show that SeqLDA is significantly

better than LDA with respect to document modelling accuracy as measured by

perplexity; and the latter will typically demonstrate the superiority of SeqLDA

in topic evolution analysis.
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Table 6.3: Dataset statistics

The

Prince

Moby

Dick

Pat-1000

Training Testing

No. of documents 1 1 800 200

No. of segments 26 135 49,200 11,360

No. of words 10,588 88,802 2,048,600 464,460

Vocabulary 3,292 16,223 10,385

6.6.1 Data Sets

The patent dataset (i.e., Pat-1000) has 1000 patents that are randomly selected

from a large set of U.S. patents2. They are granted between Jan. and Apr. 2009

under the class “computing; calculating; counting”. All patents are split into

paragraphs according to the original layout in order to preserve the document

structure. I have removed all stop-words, extremely common words (i.e., most

frequent 50 words), and less common words (i.e., words appear in less than 5 doc-

uments). No stemming has been done. I here treat paragraphs as segments. The

two books I choose for topic evolution analysis are “The Prince” by Niccolò Machi-

avelli and “Moby Dick” by Herman Melville, also known as “The Whale”. They

are split into chapters which are treated as segments, and only stop-words are

removed. Table 6.3 shows the statistics of these datasets.

6.6.2 Document modelling

I follow the standard way in document modelling to evaluate the per-word pred-

icative perplexity of SeqLDA and LDA on the Pat-1000 dataset with 20% held

out for testing. In order to calculate the likelihood for each unseen word in the

SeqLDA model, we need to integrate out the sampled distributions (i.e., µ and

Φ) and sum over all possible topic assignments. Here, I approximate the integrals

using a Gibbs sampler with Equations (6.8), (6.9) and (6.10) for each sample of

assignments z and t. In sampling procedures, I run each Gibbs sampler for 2,000

iterations with 1,500 burn-in iterations. After the burn-in period, a total number

of 5 samples are drawn at a lag of 100 iterations. These samples are averaged to

yield the final trained model.

I first investigate the performance of SeqLDA with or without the hyper-

2All patents are from Cambia, http://www.cambia.org/daisy/cambia/home.html
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Figure 6.3: Perplexity comparison on the Pat-1000 dataset.

Table 6.4: P-values for paired t-test for results in Figure 6.3(a)

Pat-1000

SeqLDA alpha SeqLDA b SeqLDA alpha b

SeqLDA 2.2e-1 2.8e-1 1.3e-2

Table 6.5: P-values for paired t-test for results in Figure 6.3(c)

Pat-1000

SeqLDA SeqLDA D SeqLDA P

LDA D 7.5e-4 3.3e-4 3.2e-5

LDA P 3.0e-3 1.9e-2 3.6e-3
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parameter estimation proposed in Section 6.5. Four sets of experiments3 have

been done. They are, respectively, SeqLDA with α = 0.10 (i.e., symmetric α),

b = 10 and a = 0.2 (SeqLDA); with α optimised by Newton-Raphson method,

b = 10 and a = 0.2 (SeqLDA alpha); with α = 0.10, b optimised by sampling

method and a = 0.2 (SeqLDA b); and with both α and b optimised and a = 0.2

(SeqLDA alpha b). Note that for simplicity, b is optimised for each document,

even though we can optimise b for each individual segment. Figure 6.3(a) shows

the results in terms of perplexity.

According to the p-values of the paired t-test (as shown in Table 6.4), there is

no significant difference between the manually optimised SeqLDA and the auto-

matically optimised models at the significant level 5%. It has been observed that

the average value of the optimised asymmetric α is close to 0.10. The perplexity of

SeqLDA with only alpha optimised becomes lower than others when k is getting

larger (k > 50). In contrast, SeqLDA with both α and b optimised yields slightly

higher perplexity. This might be because the way that I used to carry out the

optimisation is approximately greedy, which cannot reach a global optimum for

both α and b. We can therefore conclude that the hyper-parameter optimisation

algorithms work as well as the manual optimisation. And, I can further claim that

these hyper-parameters are not difficult to set up in order to get good results.

Secondly, I ran another set of experiments to verify whether there indeed ex-

ists a sequential topical dependency among segments of each document. Instead

of retaining the original layout of segments (i.e., the original order of paragraphs

in a patent), I have randomly permuted the order of the segments for both the

training dataset and the testing dataset. In Figure 6.3(b), “NP” indicates se-

qLDA trained and tested without permutation, “PTrTe” indicates the model

trained and tested with permutation, and “PTe” indicates the model tested with

permutation but trained without permutation. Taking k = 25 as an example, the

perplexity corresponding to the original layout (1905.2) is much lower than that

corresponding to the randomly permuted order (2009.8). Thus, the significant

difference shows that the sequential topical structure does exist in the patents,

and considering this structure can improve the accuracy of text analysis in terms

of perplexity.

Thirdly, I compare SeqLDA with LDA. In order to make a fair comparison,

I set hyper-parameters fairly, since they are important for the two models. The

3I have first done a series of experiments with the value of α ranging from 0.01 to 0.90 to

manually choose the optimal one, which is 0.10. And the values of b and a are chosen empirically

based on the initial experiments. They are b = 10 and a = 0.20



120 CHAPTER 6. SEQUENTIAL LDA MODEL

Moment-Matching algorithm Minka [2000] is used to optimise α for LDA, and

all the parameters for SeqLDA are fixed as: a = 0.2, b = 10, α = 0.1. And

γ is set to 200/W for both models. Note that I seek to automatically optimise

the parameter settings for LDA, which enables one to draw fair conclusions on

SeqLDA’s performance.

Figure 6.3(c) demonstrates the perplexity comparison for different number of

topics. LDA has been tested on document level (LDA D) and paragraph level

(LDA P) separately. I have also run SeqLDA with or without being boosted

by either LDA D (SeqLDA D) or LDA P (SeqLDA P). The boosting is done

by using the topic assignments learnt by LDA to initialise SeqLDA. As shown

in the figure, SeqLDA, either with or without boosting, consistently performs

better than both LDA D and LDA P. The p-values from the paired-t test shown

in Table 6.5 are always smaller than 0.05, which has clearly indicated that the

advantage of SeqLDA over LDA is statistically significant. Evidently, the topical

dependencies information propagated through the sequential document structure,

for the patent dataset, indeed exists; and explicitly considering the dependency

structure in topic modelling, as SeqLDA does, can be valuable to help understand

the original text content.

In my last set of experiments for perplexity comparison, I show the perplexity

comparison by changing the proportion of training data. In these experiments,

the number of topics for both LDA and SeqLDA are assumed to be fixed and

equal to 50. As shown in Figure 6.3(d), SeqLDA (without boosting) always per-

forms better than LDA as the proportion of training data increases. The training

time, for example, with 80% patents for training and 2000 Gibbs iterations, is

approximately 5 hours for LDA, and 25 hours for SeqLDA, which indicates that

SeqLDA is still reasonably manageable in terms of training time.

6.6.3 Topic Distribution Profile over Segments

Besides better modelling perplexity, another key contribution of SeqLDA is the

ability to discover underlying sequential topic evolution within a document. With

this, one can further perceive how the author organises, for instance, her stories in

a book or her ideas in an essay. Here, I test SeqLDA on two books with following

parameter settings: a = 0, α = 0.5, k = 20, b = 25 for “The Prince”, and b = 50

for “Moby Dick”.

To compare the topics of SeqLDA and LDA, we have to solve the problem

of topic alignment, since topics learnt in separate runs have no intrinsic align-
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(a) The Prince (b) Moby Dick

Figure 6.4: Topic alignment by confusion matrix

ment. The approach I adopt is to start the SeqLDA’s Gibbs sampling with the

topic assignments learnt from LDA. Figure 6.4(a) and Figure 6.4(b) show the con-

fusion matrices between the topic distributions generated by SeqLDA and LDA

with Hellinger Distance, where SeqLDA topics run along the X-axis. Most topics

are well aligned (with blue on the diagonal and yellow off diagonal), especially

those for “Moby Dick”. For “The Prince”, the major confusion is with topic-0

and 9 yielding some blueish off diagonal. Table 6.6 shows some topic examples

learnt from “The Prince”.

After aligning the topics, I plot the topic distributions (i.e., subtopics) as a

function of chapter to show how each topic evolves, as shown in Figure 6.5 and

Figure 6.6 respectively. Immediately, we can see that the topic evolving patterns

over chapters learnt by SeqLDA are much clearer that those learnt by LDA. For

example, compare the subfigures in these two figures, it is a bit hard to find

the topic evolution patterns in Figure 6.5(b) learnt by LDA; in contrast, we can

find the patterns in Figure 6.6(b), for example, topic-7, which is about men on

board ship generally, and topic-12, which is about the speech of old (“thou,”

“thee,” “aye,” “lad”) co-occur together from chapters 15 to 40 and again around

chapters 65-70, which is coherent with the book.

Moreover, Figure 6.7(a) and Figure 6.7(b) depict the Hellinger distances

(also as a function of chapters) between the topic distributions of two consec-

utive chapters to measure how smoothly topics evolve through the books. Obvi-

ously, the topic evolution learnt by SeqLDA is much better than that learnt by

LDA. SeqLDA always yields smaller Hellinger distances and smaller variance of
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Table 6.6: Typical topics learnt from “The Prince”. Top 30 words are listed as

examples.

LDA

topic-0 servant servants pandolfo good opinion cares honours

recognise honest comprehends venafro trust attention

fails praise judgment honouring form thinking correct

error clever choosing rank disposed prime useless Sinea

faithfull study

topic-9 truth emperor flatterers opinions counsels wisdom con-

tempt advice listen preserved bold counsel resolutions

speaking maximilain patient unite born deceived case

affairs short anger prove receive support steadfast guard-

ing discriminating inferred

SeqLDA

topic-0 servant flatterers pandolfo opinions truth good hones

question emperor counsels form cares opinion servants

wisdom comprehends enable interests honours contempt

fails venafro preserved maximilain choosing advanta-

geous listen thinking capable recognise

topic-9 support cardinals labours fortify walls temporal fortified

courageous pontificate spirits resources damage town

potentates character barons burnt ecclesiastical princi-

palities defence year firing hot attack pursuit loss showed

enemy naturally

topic-15 people nobles principality favour government times hos-

tile ways oppressed enemies secure give messer friendly

rule security courage authority satisfy arises fail rome

receive finds adversity civil builds aid expect cities

topic-16 prince men great good state princes man things make

time fear considered subject found long wise army peo-

ple affaires defend whilst actions life fortune difficulty

present mind faithful examples roman
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(a) The Prince (b) Moby Dick

Figure 6.5: Topic evolution analysis by LDA

(a) The Prince (b) Moby Dick

Figure 6.6: Topic evolution analysis by SeqLDA
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Figure 6.7: Topic evolution by Hellinger Distance
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distances. The big topic shifts found by LDA are also highlighted by SeqLDA,

such as Chapter 7 to 10 in Figure 6.7(a). Evidently, SeqLDA has avoided heavy

topic drifting, and makes the topic flow between chapters much smoother than

LDA does. An immediate and obvious effect is that this can help readers under-

stand more precisely how a book is organised.

Consider “The Prince” in more detail. The topic that is most unchanged

in “The Prince” is topic-16 (having the lightest yellow in off-diagonal in Fig-

ure 6.4(a)), also show in Table 6.6. This topic occurs consistently through the

chapters in both models and can be seen to really be the core topic of the

book. Topic-15 is another topic that has not changed much, and it has its occur-

rence broadened considerably; for SeqLDA it now occurs throughout the second

half of the book starting at chapter 10; the topic is about the nature of governing

principalities as opposed to the first 9 chapters which cover how principalities are

formed and how princes gain their titles. Now consider the issue of topic-0 and

9. Inspection shows topic-9 learnt by LDA occurring in Chapters 2 and 16 is split

into two by SeqLDA: the chapter 16 part joins topic-0 which has its strength

in the neighbouring Chapter 15, and the topic-0 part broadens out amongst the

three chapters 1-3. These topics are illustrated in Table 6.6 and it can be seen

that topic-0 and topic-9 by LDA talk about related themes.

Now consider “Moby Dick” in more detail. In some cases SeqLDA can be

seen to refine the topics and make them more coherent. Topic-6, for instance, in

SeqLDA is refined to be about the business of processing the captured whale with

hoists, oil, blubber and so forth. This occurs starting at chapter 98 of the book.

For LDA this topic was also sprinkled about earlier. In other cases, SeqLDA seems

to smooth out the flow of otherwise unchanged topics, as seen for topic-0, 1 and 2

at the bottom of Figure 6.6(b).

6.7 Summary

In this chapter, I have proposed a novel generative model, the Sequential La-

tent Dirichlet Allocation (SeqLDA) model by explicitly considering the docu-

ment structure in the hierarchical modelling. The sequential topical dependencies

buried in the higher level of document structure are captured by the dependen-

cies among the segments’ subtopics (or ideas) which are further approximated

by topic distributions. Thus, the topic evolution can be estimated by observ-

ing how topic distributions change among segments. Unlike other Markov chain
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based models, SeqLDA, as an integrated model, detects the rise and fall of topics

within each individual document by putting the Markov assumption on the topic

distributions.

I have also developed for SeqLDA an efficient collapsed Gibbs sampling algo-

rithm based on the CMGS for the HPDP (Equation 3.6). Instead of sampling for

the full customer seating arrangement, this algorithm uses the table multiplicities

to sum out the exact customer partitions in the restaurants. In this way, the real

valued parameter of the PDP can easily be integrated out. Having observed that

the PDP is sensitive to the concentration parameters (i.e., b), I introduced an

adaptive rejection sampling method to optimise b. Besides the advantage over

LDA in terms of improved perplexity, the ability of SeqLDA to discover more co-

herent sequential topic structure (i.e., how topics evolves among segments within

a document) has been demonstrated in the experiments. The experimental results

also indicate that the document structure can aid in the statistical text analysis,

and structure-aware topic modelling approaches provide a solution going beyond

the “bag-of-words” assumption.

There are various ways to extend SeqLDA which I hope to explore in the

future. The model could be applied to conduct document summarisation and text

segmentation, where sequential structures could play an important role. The two

parameters a and b in the PDP can be optimised dynamically for each segment

in order to handle sizeable topic drift among segments i.e., where the correlations

between two successive segments are not very strong.
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Chapter 7

Adaptive Topic Model

In this chapter, I present another structured topic model, called an adaptive topic

model (AdaTM), based on the compound Poisson-Dirichlet process (CPDP) dis-

cussed in Section 2.4. This new model integrates STM (in Chapter 5) and Se-

qLDA (in Chapter 6) to incorporate the full document structure, so that two

kinds of subject structures (i.e., the latent hierarchical structure and the sequen-

tial structure) buried in the high levels of document structures can be modelled

simultaneously. It is evaluated on five sets of U.S. patents with different Inter-

national Patent Classification (IPC) codes and two books. Experimental results

show that with topic adaptation, AdaTM can outperform STM, SeqLDA and

LDA in terms of per-word predicting likelihood, and it is able to uncover clear

topic evolution structure in the books, like SeqLDA.

This chapter is organised as follows. Section 7.1 gives the motivation of the

new model. Section 7.2 elaborates the model in detail, then the blocked Gibbs

sampling algorithm based on BTIGS is developed in Section 7.3. The experimental

results are reported in Section 7.4. Section 7.5 concludes this chapter.

7.1 Introduction

In Chapters 5 and 6, I developed two structured topic models, i.e., STM and Se-

qLDA, that explore the hierarchical document structure and the sequential docu-

ment structure respectively. The former maps the hierarchical document structure

to a document topic hierarchy by using the PDP (see Figure 5.1); and the latter

deals with the underlying sequential topic dependencies (see Figure 6.1) conveyed

by the segment sequence (i.e., the order of segments in the document layout) by

extending the HPDP with a multi-level hierarchy. Both models have better pre-

127
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dictive accuracy than the standard LDA and other segmented topic models, which

suggests that document structure can be important in analysing the original text

content.

However, documents (e.g., books, scientific articles and patents) usually ex-

hibit both hierarchical and sequential structures. Recall that documents are com-

posed of segments, each of which contains a group of words. The definition of

segments can vary according to different types of documents. For example, seg-

ments can be chapters in books, sections in articles, or paragraphs in essays. All

segments are organised logically to form a document. The logical organisation

is done through linkages between the document subject and subtopics associat-

ing with segments, and those among the subtopics. The former linkages form

the hierarchical topic structure, and the latter ones form the sequential topic

structure. All the linkages establish the complete document structure.

The problems of modelling these two kinds of structures separately could be:

1. Modelling the document subject and its corresponding segment subtopics

in a hierarchical way has assumed segments in a document are exchange-

able. This implies that there are no direct relations among subtopics. How-

ever, in writing, people usually try to link a segment to its antecedent and

subsequent segments in order to make topics change smoothly from one seg-

ment to another. Therefore, the exchangeability assumption is not always

appropriate, especially if documents indeed exhibit some latent sequential

topic structure. This can be the reason why STM could be inappropriate

for doing analysis of topic evolution .

2. In contrast, only modelling the sequential structure may misinterpret the

document structure if correlations among subtopics of adjacent segments are

not strong. Here I take books, especially novels as examples. In many books,

one can have topic shifts from one chapter to another. This was discussed

in the analysis of topic distribution profile over chapters of two novels in

Section 6.6.3. The topic shifts may interrupt the sequential structure, so it

is possible that stories written in different chapters do not exhibit obvious

sequential relations, though they altogether make up a complete story. In

this case, modelling the sequential structure with the hierarchical structure

may yield a better performance.

In Figure 7.1, the graph on the top illustrates an example of a document struc-

ture that consists of both kinds of topic structures. The sets ({ν1, ν2}, {ν3, ν4, ν5}
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Figure 7.1: An example of a full document structure with seven segments, each

of which is denoted by a circle with label νi. The top one shows the case when the

document structure is known a priori. The button one shows the case when the

document structure is not known a priori, thus we need to model the document

structure with a fully directed graph. The latter is usually the case in document

analysis.

and {ν6, ν7}) that contain different number of linked nodes exhibit a hierarchical

structure, and nodes in each set exhibit a sequential structure. Topic shifts can

be simulated by adapting a new subtopic from the document subject at breaking

points of the chain, i.e., at nodes ν3 and ν6. If document topic structures are

known a priori, we can linearly combines STM and SeqLDA. However, document

topic structures are not always known a priori. They need to be learnt from the

original text content and the physical layout. As a consequence, we need an in-

tegrated model that models the two kinds of structure together, as shown by

the fully directly linked graph in Figure 7.1. The integrated model should al-

low the data themselves to decide whether they exhibit both structures, or just

one. Thus, each node can inherit topical features from both parent nodes. There-

fore, the subtopic of one segment is now an admixture of its preceding segment

subtopic and the document subject.

In this chapter, I am interested in developing a new topic model that can

go beyond a strictly sequential model (e.g., SeqLDA) while allowing some hi-

erarchical influence. I employ the hybrid shown at the buttom of Figure 7.1,

and associate relative strengths with the arrows. These relative strengths can be

used to adaptively allow this hybrid to approximate the one in the top of Fig-

ure 7.1. Thus, one needs to depart from the earlier HMM style models, see, e.g.,
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[Blei and Moreno, 2001; Purver et al., 2006; Gruber et al., 2007; Eisenstein and

Barzilay, 2008; Wang et al., 2011; Nguyen et al., 2012].

Research in Machine Learning and Natural Language Processing has attempted

to model various topical dependencies. Some work considers structure within the

sentence level by mixing HMMs and topics on a word by word basis: the as-

pect HMM [Blei and Moreno, 2001] and the HMM-LDA model [Griffiths et al.,

2005] that models both short-range syntactic dependencies and longer semantic

dependencies. These models operate at a finer level than we are considering at a

segment (like paragraph or section) level. To make a tool like the HMM work at

higher levels, one needs to make stronger assumptions, for instance assigning each

sentence a single topic and then topic specific word models can be used: the hid-

den topic Markov model [Gruber et al., 2007] that models the transitional topic

structure; a global model based on the generalised Mallows model [Chen et al.,

2009], and a HMM based content model [Barzilay and Lee, 2004]. Researchers

have also considered time-series of topics: various kinds of dynamic topic mod-

els, following early work of [Blei and Lafferty, 2006b], represent a collection as a

sequence of sub-collections in epochs. Here, one is modelling the collections over

broad epochs, not the structure of a single document that AdaTM considers.

7.2 AdaTM Generative Process

In this section, I develop a new adaptive topic model (AdaTM), a fully structured

topic model, by using the CPDP discussed in Section 2.4 to simultaneously model

the hierarchical and the sequential topic structures. As for STM and SeqLDA,

topic distributions are used to mimic the subjects of documents and subtopics

of their segments. The notations and terminologies used in the following sections

are the same as those in STM, see Table 5.1. In addition, ρi,j, drawn from a Beta

distribution (i.e., a two-dimensional Dirichlet distribution), is the mixture weight

associating with the link between document distribution µi and segment topic

distribution νi,j. It is first introduced in the CPDP, see Section 2.4.

In AdaTM, the two topic structures are captured by drawing topic distri-

butions from the CPDPs with two base distributions as follows. The document

topic distribution µi and the jth segment topic distribution νi,j are the two base

distributions of the CPDP for drawing the (j + 1)th segment topic distribution

νi,j+1. The topic distribution of the first segment, i.e., νi,1, is drawn directly

from a PDP with the base distribution µi. I call this generative process topic
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Figure 7.2: Adaptive topic model. µ is the document topic distribution for the

document subject. ν1, ν2, . . . , νJ are the segment topic distributions for the

segment subtopics. ρ is a set of the mixture weights associated with segments.

adaptation. Clearly, recursively drawing segment topic distribution with a CPDP

forms a simple DAG structure over topic vectors. The graphical representation of

AdaTM is shown in Figure 7.2.

The complete probability construction of AdaTM is:

φk ∼ DirichletW (γ) for each k

µi ∼ DirichletK (α) for each i

ρi,j ∼ Beta(λS, λT ) for each 1 ≤ j ≤ Ji

νi,j ∼ PYP (ρi,jνi,j−1 + (1− ρi,j)µi, a, b) for each 1 ≤ j ≤ Ji

zi,j,l ∼ DiscreteK (νi,j) for each i, j, l

wi,j,l ∼ DiscreteK

(
φzi,j,l

)
for each i, j, l

Here, for notational convenience, let νi,0 = µi. Like in STM and SeqLDA, I

have assumed the dimensionality of the Dirichlet distribution (i.e., the number

of topics) is known and fixed, and word probabilities are parameterised with

a K × W matrix Φ. The complete-data likelihood can be read directly from
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Figure 3.11 using distributions given in the above probability model, i.e.,

p(µ1:I ,ν1:I,1:J , z1:I,1:J ,w1:I,1:J | a, b,α,Φ, λS, λT )

=
I∏
i=1

(
p(µi |α)

Ji∏
j=1

(
p(ρi,j |λS, λT ) p(νi,j |µi,νi,j−1, ρi,j, a, b)︸ ︷︷ ︸

νi,j∼CPDP(ρi,jνi,j−1+(1−ρi,j)µi,a,b)

Li,j∏
l=1

p(zi,j,l |νi,j)p(wi,j,l |φzi,j,l)
))

(7.1)

7.3 Gibbs Sampling via BTIGS

For the posterior inference, I elaborate a blocked Gibbs sampling algorithm based

on the BTIGS (see Section 3.4) to do approximated inference. Table 7.1 lists

all the statistics needed in the algorithm. Notice that for easy understanding,

terminologies in the CRP will be used, i.e., customers, dishes and restaurants,

which correspond to words, topics and segments respectively. The basic theories

of the CRP for the PDP and the CPDP are discussed in Chapters 2 and 3. It

is worth reminding ourselves that tables in a child restaurant are sent as proxy

customers to its parent restaurants, see Figure 3.9.

7.3.1 Model Likelihood

To adapt the blocked table indictor Gibbs sampling algorithm for AdaTM, we

first compute the marginal distribution of the observations w1:I,1:J (words), the

topic assignments z1:I,1:J and the table indicators u1:I,1:J . Specifically, the Dirich-

let integral is used to integrate out the document topic distributions µ1:I and the

topic-by-words matrix Φ, and the joint posterior distribution computed in Equa-

tion (3.18) is used to recursively marginalise out the segment topic distributions

ν1:I,1:J . With these variables marginalised out, we derive the following marginal

distribution

p(z1:I,1:J ,w1:I,1:J ,u1:I,1:J |α,γ, a, b, λS, λT )

=
I∏
i=1

(
BetaK

(
α+

∑Ji
j=1 si,j

)
BetaK (α)

Ji∏
j=1

(
Beta (Si,j + λS, Ti,j + λT )

Beta(λS, λT )

(b|a)Ti,j+Si,j
(b)Ni,j+Ti,j+1

K∏
k=1

(
ni,j,k + t∗i,j+1,k

(t∗i,j,k + s∗i,j,k)

)−1

S
ni,j,k+t∗i,j+1,k

t∗i,j,k+s∗i,j,k,a

)) K∏
k=1

BetaW (γ +M k)

BetaW (γ)
, (7.2)

where BetaK (α) is a K dimensional beta function that normalises the Dirich-

let; (x)N is given by (x|1)N , and (x|y)N denotes the Pochhammer symbol (see
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Equations (3.2)); SNM,a is a generalised Stirling number (see Section 3.3). Note

the following constraints apply:

t∗i,j,k + s∗i,j,k ≤ ni,j,k + t∗i,j+1,k, (7.3)

t∗i,j,k + s∗i,j,k = 0 if and only if ni,j,k + t∗i,j+1,k = 0 . (7.4)

For convenience, ti,Ji+1,k = 0 and ti,1,k = 0. The reason for setting ti,1,k to zero is

that the topic distribution of the first segment of each document is always drawn

from a PDP with base distribution µi (i.e., the document topic distribution), as

shown in Figure 7.2.

As discussed in Section 3.4, table indicators are not required to be recorded,

instead, randomly sampled in Gibbs sampling iterations; and all the statistics

needed are the same as those in the CMGS. The table indicators can be used to

reconstruct the table multiplicities, and vice versa. See Chapter 3 for detailed dis-

cussions. Furthermore, the table indicator ui,j,l for word wi,j,l has two components

in AdaTM. It is defined specifically as

ui,j,l = (u1, u2) s.t. u1 ∈ [−1, 0, 1] and u2 ∈ [1, · · · , j],

Table 7.1: List of statistics used in AdaTM

Statistic. Description.

Mi,k,w the total number of words in document i with dictionary index

w and being assigned to topic k.

Mk,w Mi,k,w totalled over documents i, i.e.,
∑

iMi,k,w

M k vector of W values Mk,w

ni,j,k topic total in document i and segment j for topic k, i.e.,

ni,j,k =
∑Li,j

l=1 1zi,j,l=k. It counts customers arriving by them-

selves in the CRP representation.

Ni,j topic total sum in document i and segment j, i.e.,
∑K

k=1 ni,j,k

t∗i,j,k table count in the CPR for document i and paragraph j, for

topic k that is inherited back to paragraph j − 1 and µi,j−1.

s∗i,j,k table count in the CPR for document i and paragraph j, for

topic k that is inherited back to the document and µi.

Ti,j total table count in the CRP for document i and segment j.

Si,j total table count in the CRP for document i and segment j.

t∗i,j table count vector, i.e., (t∗i,j,1, ..., t
∗
i,j,K) for segment j.

s∗i,j table count vector, i.e., (s∗i,j,1, ..., s
∗
i,j,K) for segment j.
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where u2 indicates the restaurant (i.e., a segment denoted by node νj in Fig-

ure 3.11) up to which wi,j,l contributes a table. Given u2, u1 = −1 denotes wi,j,l

contributes a table count to si,u2,k and t∗i,j′,k for u2 < j′ ≤ j; u1 = 0 denotes

wi,j,l does not contribute a table to node u2, but contributes a table count to

ti,j′,k for u2 < j′ ≤ j; and u1 = 1 denotes wi,j,l contributes a table count to each

ti,j′,k for u2 ≤ j′ ≤ j. Now, we are ready to compute the conditional probabil-

ities for jointly sampling topics and table indicators from the model likelihood

function (7.2).

7.3.2 Removing the Current Topic

Before sampling a new topic for wi,j,l, we first need to remove its current value

(zi,j,l = k′) from the related statistics according to its table indicator ui,j,l. How-

ever, table indicators for all words are not recorded. Therefore, the table indi-

cators need to be randomly assigned by sampling. Given zi,j,l = k′ and u2 = j′

(1 ≤ j′ ≤ j), the probabilities of a word wi,j,l (i.e., a customer in the restaurant)

being a table head at restaurant j′ (i.e. j′-th segment) are respectively:

p(u1 = −1 |u2 = j′, zi,j,l = k′) =
s∗i,j′,k′

ni,j′,k′ + t∗i,j′+1,k′
(7.5)

p(u1 = 1 |u2 = j′, zi,j,l = k′) =
t∗i,j′,k′

ni,j′,k′ + t∗i,j′+1,k′
(7.6)

p(u1 = 0 |u2 = j′, zi,j,l = k′) =
(ni,j′,k′ + t∗i,j′+1,k′)− (si,j′,k′ + t∗i,j′,k′)

ni,j′,k′ + t∗i,j′+1,k′
(7.7)

The challenge here is to handle the two constraints (7.3) and (7.4) to make sure

they are always satisfied after removing a topic. It is very interesting that the three

probabilities have implicitly guaranteed that sampling to remove a topic according

to Equations (7.5), (7.6) and (7.7) will not violate the two constraints. Specifically,

the following cases at each restaurant j′ (for 1 ≤ j′ ≤ j) are considered.

Let j′ iterate from j to 1,

1. If ni,j′,k′+t
∗
i,j′+1,k′ = s∗i,j′,k′+t

∗
i,j′,k′ > 1, removing a customer implies that we

must remove a table count from either si,j′,k′ or ti,j′,k′ . It is easy to see that

p(u1 = 0 |u2 = j′, zi,j,l = k′) is always equal to zero in this case. Therefore,

if this equation holds, removing a table is guaranteed by either p(u1 =

1 |u2 = j′, zi,j,l = k′) > 0 or p(u1 = −1 |u2 = j′, zi,j,l = k′) > 0, or

both. Thus, u2 is set to j′. The value of u1 depends on whether s∗i,j′,k′ or

t∗i,j′,k′ is sampled. If t∗i,j′,k′ is sampled, i.e. u1 = 1, we need to continue
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the constraint check in restaurant j′ − 1 (i.e., the parent restaurant of j′),

because the table removed from t∗i,j′,k′ is a proxy customer in the parent

restaurant.

2. If ni,j′,k′ + t∗i,j′+1,k′ > s∗i,j′,k′ + t∗i,j′,k′ , it is a bit more complex than the above

case when they are equal. We have to consider all the following three cases:

(a) If s∗i,j′,k′+t
∗
i,j′,k′ > 1, a table could either be removed or not. It depends

on the value of ui,j,l sampled according to Equations (7.5), (7.6) and

(7.7). If a table was sampled to be removed, u2 will be set to j′, and

u1 will be set to either −1 or 1. If u1 is 1, which means the table will

be removed from t∗i,j′,k′ , then we need to recursively do the check at

the parent restaurant j′ − 1.

(b) If s∗i,j′,k′+t
∗
i,j′,k′ = 1, a table must not be removed. This is because there

are other customers (i.e., words) sitting at that table and sharing the

dish (i.e., a topic) with wi,j,l. Although the table was contributed by

wi,j,l, it cannot be removed. The recursive constraint check can be

terminated.

(c) If t∗i,j′,k′ = 0, p(u1 = 1 |u2 = j′, zi,j,l = k′) = 0. The customer does not

contribute a table count to t∗i,j′,k′ . We do not need to recursively check

constraints at the parent restaurant j′ − 1.

It is clear that, if u1 = 1, the constraint check should be done recursively towards

the first segment indexed by 1 until u1 changes to 0. Algorithm 6 shows how to

sample the table indicators to remove a topic. It is a concrete example of the

table indicator sampling algorithm for the CPDP embedded in a DAG structure,

as introduced in Section 3.3.

7.3.3 Sampling a New Topic

Now consider a new topic k is sampled for wi,j,l, denoted by zi,j,l = k. In order

to satisfy the constraints (7.3) and (7.4), for each node j′ (1 ≤ j′ ≤ j), we have

to do the recursive constraint check as done in removing a topic. The following

cases are considered: similar to removing a topic, let j′ start from j to 1,

1. If ni,j′,k+t∗i,j′+1,k = 0, which means s∗i,j′,k+t∗i,j′,k = 0, adding a customer eat-

ing the k-th dish means a new table must be created. The new table can be

either contributed to s∗i,j′,k or t∗i,j′,k, which is according to Equation (7.9). If
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Algorithm 6 Sample to remove a word wi,j,l in AdaTM

1. initialise ui,j,l with u1 = 0, u2 = j

2. for j′ = j to 1 do

3. T = s∗i,j′,k + t∗i,j′,k
4. N = ni,j′,k + t∗i,j′+1,k

5. if T = 1 & N > T then

6. return ui,j,l

7. else

8. sample u′1 according to Equations (7.5), (7.6) and (7.7);

9. if u′1 = 0 then

10. return ui,j,l

11. else

12. if u′1 = −1 then

13. u1 = −1, u2 = j′

14. return ui,j,l

15. else

16. u1 = 1, u2 = j′

17. end if

18. end if

19. end if

20. end for

21. if u1 = 1 then

22. Decrement t∗i,j′,k where u2 ≤ j′ ≤ j

23. else

24. if u1 = −1 then

25. Decrement s∗i,u2,k and t∗i,j′.k where u2 < j′ ≤ j

26. end if

27. end if

28. Decrement ni,j,k and update other related statistics
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Algorithm 7 Sample a new topic for wi,j,l in AdaTM

1. for k = 1 to K do

2. p(zi,j,l = k) = 0;

3. Find the least integer u′, otherwise u′ = −1;

4. if u′ = −1 then

5. p(zi,j,l = k) += p(zi,j,l = k, u1 = 0, u2 = j) with formula (7.8);

6. end if

7. for j′ = 1 to j do

8. if j′ ≤ u′ & j′ > 1 then

9. p(zi,j,l = k) += p(zi,j,l = k, u1 = 1, u2 = j′) with formula (7.9);

10. end if

11. p(zi,j,l = k) += p(zi,j,l = k, u1 = −1, u2 = j′) with formula (7.10);

12. end for

13. end for

14. sample a topic k′ according to the computed probabilities p(zi,j,l = k), 1 ≤
k ≤ K;

15. sample ui,j,l according the computed probabilities, conditioned on zi,j,l = k′;

16. if u1 = −1 then

17. increase si,u2,k′ , and all ti,j′′,k′ for u2 < j′′ ≤ j;

18. else

19. if u1 = 1 then

20. increase ti,j′,k′ for u2 ≤ j′′ ≤ j;

21. end if

22. end if

23. ni,j,k′ = ni,j,k′ + 1;

it is sampled to contribute the table to t∗i,j′,k, a recursive constraint check

is needed in the parent restaurant j′ − 1, since this new table will be sent

as a proxy customer to the parent restaurant.

2. If ni,j′,k + t∗i,j′+1,k > 0, adding a customer may or may not increase the table

count (either t∗i,j′,k or s∗i,j′,k) by one. It will depend on the value of ui,j,l

sampled according to Equations (7.8), (7.9) and (7.10). Similar to the first

case, if t∗i,j′,k is sampled, we need to do the recursive check up to the parent

restaurant j′ − 1.

As a consequence, adding a customer wi,j,l to the current restaurant with

zi,j,l = k could create a new table in each restaurant j′ for 1 ≤ j′ ≤ j. However,
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to guarantee the table is created recursively, if ni,j′,k + t∗i,j′+1,k = 0 and t∗i,j′,k is

sampled to increase, we must find the least integer u′ so that ni,j′,k + t∗i,j′+1,k = 0

for u′ ≤ j′ ≤ j. All nodes between u′ (exclusive) and j (inclusive) should only

consider two options, u1 = −1 and u1 = 0, because a recursion is needed if

u1 = 1. Moreover, the special case is when j′ = u′, u1 now can be chosen to

be 1. After considering all the cases discussed above, we can derive the joint

conditional probabilities of a topic assignment zi,j,l and the corresponding table

indicator ui,j,l as follows.

p(zi,j,l = k, u1 = 0, u2 = j) ∝ (7.8)

1

b+Ni,j + Ti,j+1

ni,j,k + t∗i,j+1,k + 1− (t∗i,j,k + s∗i,j,k)

ni,j,k + t∗i,j+1,k + 1

S
ni,j,k+t∗i,j+1,k+1

t∗i,j,k+s∗i,j,k,a

S
ni,j,k+t∗i,j+1,k

t∗i,j,k+s∗i,j,k,a

γwi,j,l +Mk,wi,j,l∑
w(γw +Mk,w)

.

p(zi,j,l = k, u1 = 1, u2 = j′) ∝ (7.9)

1

b+Ni,j′−1 + Ti,j′

j∏
j′′=j′

(
Ti,j′′ + λT

Si,j′′ + Ti,j′′ + λS + λT

b+ a(Ti,j′′ + Si,j′′)

b+Ni,j′′ + Ti,j′′+1

)
ni,j′−1,k + t∗i,j′,k + 1− (t∗i,j′−1,k + s∗i,j′−1,k)

ni,j′−1,k + t∗i,j′,k + 1

j∏
j′′=j′

t∗i,j′′,k + s∗i,j′′,k + 1

ni,j′′,k + t∗i,j′′+1,k + 1

S
ni,j′−1,k+t∗

i,j′,k+1

t∗
i,j′−1,k

+s∗
i,j′−1,k

,a

S
ni,j′−1,k+t∗

i,j′,k
t∗
i,j′−1,k

+s∗
i,j′−1,k

,a

j∏
j′′=j′

S
ni,j′′,k+t∗

i,j′′+1,k
+1

t∗
i,j′′,k+s∗

i,j′′,k+1,a

S
ni,j′′,k+t∗

i,j′′+1,k

t∗
i,j′′,k+s∗

i,j′′,k,a

γwi,j,l +Mk,wi,j,l∑
w(γw +Mk,w)

.

p(zi,j,l = k, u1 = −1, u2 = j′) ∝ (7.10)

αk +
∑

j si,j,k∑
k αk +

∑
j,k si,j,k

Si,j′ + λS
Ti,j′ + λT

j∏
j′′=j′

Ti,j′′ + λT
Si,j′′ + Ti,j′′ + λS + λT

j∏
j′′=j′

b+ a(Ti,j′′ + Si,j′′)

b+Ni,j′′ + Ti,j′′+1

t∗i,j′′,k + s∗i,j′′,k + 1

ni,j′′,k + t∗i,j′′+1,k + 1

S
ni,j′′,k+t∗

i,j′′+1,k
+1

t∗
i,j′′,k+s∗

i,j′′,k+1,a

S
ni,j′′,k+t∗

i,j′′+1,k

t∗
i,j′′,k+s∗

i,j′′,k,a


γwi,j,l +Mk,wi,j,l∑

w(γw +Mk,w)
.

Algorithm 7 shows how to sample to add a new topic based on Equations (7.8),

(7.9) and (7.10). The implementation is quite easy and straightforward.
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7.3.4 Estimating Topic/Word Distributions

From statistics obtained after the burn-in of the Markov chain, we can estimate

document topic distributions µ, segment topic distributions ν, and topic-word

distributions φ. Like STM and SeqLDA, they can be approximated from the

following posterior expected values via sampling:

µ̂i,k = Ezi,1:Ji ,t∗i,1:Ji ,s∗i,1:Ji , |wi,1:Ji ,α,a,b,λS ,λT

 αk +
∑Ji

j=1 s
∗
i,j,k∑K

k=1

(
αk +

∑Ji
j=1 s

∗
i,j,k

)
(7.11)

ν̂i,j,k = Ezi,1:Ji ,t∗i,1:Ji , s∗i,1:Ji , |wi,1:Ji ,α,a,b,λS ,λT

[
(ni,j,k + t∗i,j+1,k)− a× (t∗i,j,k + s∗i,j,k)

b+Ni,j + Ti,j+1

+
a(Ti,j + Si,j) + b

b+Ni,j + Ti,j+1

(
µi,k(Si,j + λS) + νi,j−1,k(Ti,j + λT )

Ti,j + Si,j + λS + λT

)]
(7.12)

φ̂k,w = Ez1:I,1:J ,t∗1:I,1:J ,s∗1:I,1:J |w1:I,1:J ,α,γ,a,b,λS ,λT

[
γw +Mk,w∑W

w′=1(γw′ +Mk,w′)

]
(7.13)

7.4 Experimental Results

As done in experiments in Chapters 5 and 6, I implemented AdaTM in C, and

ran it on a desktop with Intel Core i5 CPU (2.8GHz×4), although the code is not

multi-threaded. In the following sets of experiments, there are three objectives:

1. To explore different setting of hyper-parameters.

2. To compare AdaTM with the earlier STM, SeqLDA and the standard LDA

(on either the document level or the segment level) in terms of per-word

predictive likelihood.

3. To view the results in detail on a number of characteristic problems.

The first objective is to study how hyper-parameters can affect the performance

of AdaTM; the second is to show the superiority of AdaTM over the other three

models with respect to document modelling accuracy; The last is to demonstrate

that AdaTM can be a promising tool for structured document analysis, which

could be useful for other ad-hoc document analysis techniques, such as structured

information retrieval, document summarisation, and topical segmentation.
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Following the standard way of doing evaluation in topic modelling, we use per-

plexity, a standard measure of dictionary-based compressibility, in performance

comparison. When reporting test perplexities, the held-out perplexity measure

[Rosen-Zvi et al., 2004] is used to evaluate the generalisation capability to the

unseen data. This is known to be unbiased. To compute the held-out perplexity,

20% of patents in each data set was randomly held out from training to be used

for testing. For this, 1000 Gibbs cycles were done for burn-in followed by 500

cycles with a lag for 100 for parameter estimation.

7.4.1 Datasets

For objectives one and two, five patent datasets are randomly selected from U.S.

patents granted in 2009 and 2010. Patents in Pat-A are selected from international

patent class (IPC) “A”, which is about “HUMAN NECESSITIES”; those in Pat-

B are selected from class “B60” about “VEHICLES IN GENERAL”; those in

Pat-H are selected from class “H” about “ELECTRICITY”; those in Pat-F are

selected from class “F” about “MECHANICAL ENGINEERING; LIGHTING;

HEATING; WEAPONS; BLASTING”; and those in Pat-G are selected from class

“G06” about “COMPUTING; CALCULATING; COUNTING”. All the patents

in these five datasets are split into paragraphs that are taken as segments, and

the sequence of paragraphs in each patent is reserved in order to maintain the

original layout. All the stop words, the top 10 common words, the uncommon

words (i.e., words in less than five patents) and numbers have been removed.

Two books used for more detailed investigation are “The Prince” by Niccolò

Machiavelli and “Moby Dick” by Herman Melville. They are split into chapters

and/or paragraphs which are treated as segments, and only stop-words are re-

moved. Table 7.2 shows in detail the statistics of these datasets after preprocess-

ing. The statistics of the two books can be find in Table 6.3. For “The Prince”,

there are 192 paragraphs.

7.4.2 Hyper-parameters Investigation

Experiments on the impact of the hyper-parameters on the patent data sets are

as follows. First, fixing K = 50, the Beta parameters λT = 1 and λS = 1, optimise

symmetric α, and do two variations fix-a: a = 0.0, trying b = 1, 5, 10, 25, ..., 300,

and fix-b: b = 10, trying a = 0.1, 0.2, ..., 0.9. Second, fix-λT (fix-λS): fix a = 0.2

and λT (λS) = 1, optimise b and α, change λS(λT ) = 0.1, 1, 10, 50, 100, 200. Fig-
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Table 7.2: Datasets

#docs #segs #words vocab

Pat-A 500 51,748 2,146,464 16,573

Pat-B 397 9,123 417,631 7,663

Pat-G 500 11,938 655,694 6,844

Pat-H 500 11,662 562,439 10,114

Pat-F 140 3,181 166,091 4,674
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Figure 7.3: Analysis of parameters of Poisson-Dirichlet process. (a) shows how

perplexity changes with b; (b) shows how it changes with a.
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Figure 7.4: Analysis of the two parameters for Beta distribution. (a) shows how

perplexity changes with λS; (b) shows how it changes with λT .
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Table 7.3: P-values for one-tail paired t-test on the five patent datasets.

AdaTM

Pat-G Pat-A Pat-F Pat-H Pat-B

LDA D .0001 .0001 .0002 .0001 .0001

LDA P .0041 .0030 .0022 .0071 .0096

SeqLDA .0029 .0047 .0003 .0012 .0023

STM .0220 .0066 .0210 .0629 .0853

ures 7.3 and 7.4 show the corresponding plots. Figures 7.3(b) and 7.4(a) show that

varying the values of a and λS does not significantly change the perplexity. In

contrast, Figure 7.3(a) shows different b values significantly change perplexity.

Therefore, I sought to optimise b. The experiment of fixing λS = 1 and changing

λT shows a small λT is preferred.

7.4.3 Perplexity Comparison

Perplexity comparisons were done with the default settings a = 0.2, α = 0.1,

γ = 0.01, λS = 1, λT = 1 and b optimised automatically using the scheme

discussed in Chapter 6. Moreover, LDA has been run on both the document level

(LDA D) and the paragraph level (LDA P). The different numbers of topics I

have run are 5, 10, 25, 50, 100, and 150. Figures 7.5(a) to 7.5(e) show the results

on these five patent datasets for different number of topics. Table 7.3 gives the p-

values of a one-tail paired t-test for AdaTM versus the others, where lower p-value

indicates AdaTM has statistically significant lower perplexity. From this we can

see that AdaTM is significantly better than SeqLDA and LDA, and better than

or comparable with STM. I observed that for Pat-B and Pat-H, the hierarchical

structure dominates the sequential structure, given that the relative weights on

edges between µ and νj are usually larger than those between νj and νj−1, which

results in that AdaTM and STM are comparable.

In addition, I ran another set of experiments by randomly shuffling the order of

paragraphs in each patent several times before running AdaTM. Then, I calculate

the difference between perplexities with and without random shuffle. Figure 7.5(f)

shows the plot of differences in each data sets. The positive difference means

randomly shuffling the order of paragraphs indeed increases the perplexity. It can

further prove that there does exist sequential topic structure in patents, which

confirms the finding in Chapter 6.
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Figure 7.5: Perplexity comparisons.



144 CHAPTER 7. ADAPTIVE TOPIC MODEL

(a) LDA versus AdaTM for chapters (b) LDA versus AdaTM for paragraphs

Figure 7.6: Topic alignment analysis on “The Prince”.

7.4.4 Topic Evolution Comparisons

All experiments reported in this section are run with 20 topics, the upper limit for

easy visualisation, and without optimising any parameters. The Dirichlet Priors

are fixed as αk = 0.1 and γw = 0.01. For AdaTM, SeqLDA, and STM, a = 0.0

and b = 100 for “The Prince” and b = 200 for “Moby Dick”. These settings

have proven robust in experiments. To align the topics so visualisations match,

the sequential models are initialised using an LDA model built at the chapter

level. Moreover, all the models are run at both the chapter and the paragraph

level. With the common initialisation, both paragraph level and chapter level

models can be aligned. Figure 7.6 shows the alignment of topics between the ini-

tialising model (LDA on chapters) and AdaTM run on chapters/paragraphs. Each

point in the matrix gives the Hellinger distance between the corresponding topics,

color coded. The plots for the other models, chapters or paragraphs, are similar

so plots like Figure 7.7 can be meaningfully compared.

To visualise topic evolution, I use a plot with one colour per topic displayed

over the sequence, as done in Chapter 6. Figures 7.7(a) and 7.7(b) show these for

LDA run on chapters/paragraphs of “The Prince”. The proportion of 20 topics

is the Y-axis, spread across the unit interval. The chapters/paragraphs run along

the X-axis, so the topic evolution is clearly displayed. One can see there is no

clear sequential structure in these derived by LDA, especially in paragraphs, and

similar plots result from “Moby Dick” for LDA.

Figure 7.7 then shows the corresponding evolution plots for AdaTM and Se-

qLDA on chapters and paragraphs. The contrast of these with LDA is stark. The
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(a) LDA on chapters (b) LDA on paragraphs

(c) AdaTM on chapters (d) AdaTM on paragraphs

(e) SeqLDA on chapters (f) SeqLDA on paragraphs

Figure 7.7: Topic Evolution on “The Prince”.
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(a) LDA on chapters (b) STM on Chapters

(c) AdaTM on Chapters

Figure 7.8: Topic Evolution on “Moby Dick”.
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Figure 7.9: Topic evolution analysis based on Hellinger Distance



7.4. EXPERIMENTAL RESULTS 147

large improvement in perplexity for AdaTM (see Section 7.4.3) along with no

change in lexical coherence means that the sequential information is actually bene-

ficial statistically. Note that SeqLDA, while exhibiting slightly stronger sequential

structure than AdaTM in these figures has significantly worse test perplexity, so

its sequential affect is too strong and harming results. Also, note that some top-

ics have different time sequence profiles between AdaTM and SeqLDA. Indeed,

inspection of the top words for each show these topics differ somewhat. So while

LDA to AdaTM/SeqLDA topic correspondences are quite good due to the use

of LDA initialisation, the correspondences between AdaTM and SeqLDA have

degraded. We see that AdaTM has nearly as good sequential characteristics as

SeqLDA. Furthermore, segment topic distribution νi,j of SeqLDA are gradually

deviating from the document topic distribution µi, which is not the case for

AdaTM.

Results for “Moby Dick” on chapters are comparable. Figure 7.8 shows similar

topic evolution plots for LDA, STM and AdaTM. In contrast, the AdaTM topic

evolutions are much clearer for the less frequent topics, as shown in Figure 7.8(c).

Various parts of this are readily interpreted from the storyline. Here I briefly

discuss topics by their colour: black: Captain Peleg and the business of signing

on; yellow: inns, housing, bed; mauve: Queequeg; azure: (around chapters 60-

80) details of whales aqua: (peaks at 8, 82, 88) pulpit, schools and mythology of

whaling. We see that AdaTM can be used to understand the topics with regards

to the sequential structure of a book. In contrast, the sequential nature for LDA

and STM is lost in the noise.

7.4.5 Further comparison between AdaTM and SeqLDA

In previous section, I have shown the topic profile analysis for LDA, STM Se-

qLDA and AdaTM on the two books. In order to further compare AdaTM with

SeqLDA, here, I do analysis on the two models by using the Hellinger Distance

(HD). Specifically, the methodology used is to compute, for each segment j, the

Hellinger distance between document topic distribution µ and νj, denoted by

HD(µ,νj). Figure 7.9 shows the plots of HD(µ,νj) on the paragraph level of

“The Prince” and the chapter level of “Moby Dick”.

It is interesting that, for SeqLDA, HD(µ,νj) increases as the paragraph index

becomes large. This phenomena may be due to the Markov chain used by SeqLDA,

see Figure 6.2. In such a chain structure, νj is likely to be concentrated on

less support as j grows, which results in that νj becomes less dependent on
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µ. However, allowing some hierarchical influence in a strict sequential structure

can reduce the sequential affect of Markov chain, and it can balance the support

that νj is concentrated on. Therefore, if the distance between νj and µ becomes

large, AdaTM can pull νj back, as shown in red in Figure 7.9.

7.5 Summary

In this chapter, I have proposed an adaptive topic model (AdaTM) that models

the document structure by embedding the CPDP in a simple DAG structure. This

DAG structure is motivated by both the hierarchical and the sequential subject

structures embedded in the document layout, i.e., a segment sequence. It can be

taken as a generalisation of STM introduced in Chapter 5 and SeqLDA introduced

in Chapter 6. Specifically, if the mixture weight ρ is set to 1, AdaTM reduces to

SeqLDA; if ρ is set to 0, it reduces to STM. In order to do posterior inference for

AdaTM, I have developed a blocked table Indicator Gibbs sampling algorithm

based on BTIGS introduced in Chapter 3.

The experimental results on five sets of patents show that the average pre-

dictive accuracy of AdaTM on unseen words is significantly better than SeqLDA

and LDA, and somewhat better than STM; the topic evolution analysis shows

that with AdaTM, one could extract meaningful topics from a book like Her-

man Melville’s “Moby Dick” and concurrently gain their sequential profile. In

the future, I would like to study how AdaTM can be used in ad-hoc document

analysis. For example, It can be very interesting to apply AdaTM to topic seg-

mentation, summarisation, and semantic title evaluation. Currently, the code

runs fairly slow due to the procedure of sampling new topics discussed in Sec-

tion 7.3.3. The development of a more effective and efficient sampling algorithm

is one possible future research direction, such as particle filtering [Canini et al.,

2009].



Chapter 8

Conclusions and Future Work

Topic models, as promising unsupervised learning approaches, have gained signif-

icant momentum recently in machine learning, data mining and natural language

processing communities. They have gained wide applications in, for example,

information retrieval, sentiment analysis, and text analysis. Related techniques

such as NMF are also widely used in images analysis for codebook/dictionary

optimisation. In particular, the standard LDA has been extended by relaxing its

underlying assumptions to incorporate beyond the “bag-of-words” information,

such as supervised information (e.g., class labels) or meta-data (e.g., authors or

citations).

Despite various topic models that have been proposed in the literature, the

field of topic modelling still needs to be further developed. One promising area in

topic modelling that has been introduced in this thesis is to directly consider the

document structure ranging from semantically high-level segments (e.g., chapters

or sections ) to low-level segments (e.g., sentences or words). The layout of these

segments in a document is usually represented jointly with the document subject

structure. Exploring the document structure can be very useful in exploratory

and predictive text analytics.

This thesis presented a family of structured topic models by taking advantage

of non-parametric Bayesian methods, i.e., the two-parameter Poisson-Dirichlet

process (PDP). These models take into consideration document structure directly

by looking at the original layout of each document as a guide to structure. Three

Bayesian topic models were introduced, each capturing different types of docu-

ment structures: the hierarchical document structure, the sequential document

structure, and a mixture of the two. The experimental results from applying the

three models to several real-world document collections have demonstrated that

149
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it is beneficial to jointly model the document structure with the latent topic

variables.

In chapter 3, I introduced two new Gibbs sampling methods for doing posterior

inference for the PDP in finite discrete space. One is a two-stage Gibbs sampling

algorithm, called a Collapsed Multiplicity Gibbs Sampler (CMGS), which is based

on the table multiplicity representation for the PDP. Different from Sampling for

Seating Arrangement (SSA) sampler most commonly used with the hierarchical

DP and PDP modelling, CMGS does not need to dynamically record the cus-

tomer count at each table. The other is a Blocked Table Indicator Gibbs Sampler

(BTIGS). In BTIGS, a new auxiliary latent variable, called table indicator, is

introduced to record the table contribution of customers. Unlike recording the

customer-table assignment, table indicators can be randomly assigned in Gibbs

cycles. Note from the table indicator assignments, we can reconstruct the table

multiplicity representation, and vice versa. The results of experiments run in a

simply controlled environment of multinomial sampling have shown that both

CMGS and BTIGS converge faster than SSA.

Chapter 5 presented a Segmented Topic Model (STM) that directly models

the document structure with a four-level hierarchy. It maps the layout of seg-

ments in a document to a hierarchical subject structure. I developed for STM

an effective collapsed Gibbs sampling algorithm based on CMGS. Using several

real-world document collections, I compared it with the standard LDA and other

segmented topic models, demonstrating that STM performs better than other

models in terms of per-word predictive perplexity. For example, STM gains 28%

improvement over LDA running on document level and 18% on paragraph level,

when 100 topics are used for the patent dataset. The concentration parameter

b is optimised for the case when a = 0. The primary benefit of STM is that it

allows us to model document structure by simultaneously modelling document

and segment topic distributions in the same latent topic space.

In Chapter 6, I considered another document structure, the sequential docu-

ment structure, by introducing a novel Sequential Latent Dirichlet Allocation

(SeqLDA) model. This model relaxes the exchangeability assumption on the

segments, which is made by STM. SeqLDA uses a simple first-order Markov

chain to simulate the segment sequence in a document, the first node in the

chain corresponds to the document subject, subsequent nodes correspond to seg-

ment subtopics. I adapted CMGS in a multi-level hierarchy context to do pos-

terior inference for SeqLDA. In addition to the better predictive accuracy on

unseen words, the ability of SeqLDA to explore the topic evolution in individual
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documents has been demonstrated by topic evolution analysis on several story

books. Furthermore, I modified an adaptive rejection sampling method to opti-

mise b for a > 0. It has been shown that this optimisation algorithm works as

well as manual optimisation.

Chapter 7 further considered the full document structure, which is a mixture

of the two modelled respectively by STM and SeqLDA. I introduced an Adaptive

Topic Model (AdaTM) for modelling the full document structure by embedding

the compound Poisson-Dirichlet process in a simple DAG structure. The topic

distribution of each segment is now an admixture of the document topic distri-

bution and its preceding segment topic distribution. Each document can exhibit

both the hierarchical and sequential structures. The experimental results showed

that the performance of AdaTM is better than the earlier models: compared with

STM, AdaTM can uncover clear sequential topic structures in documents without

harming the perplexity; compared with SeqLDA, AdaTM can gain much lower

perplexity.

In addition, understanding and applying CMGS and BTIGS to complex mod-

els are quite challenging. Careful attention should be paid to the implementation,

especially, to handle the constraints (e.g., Constraint 3.5) on table and customer

counts in a recursive way. Therefore, another important contribution of this the-

sis is the implementation of CMGS and BTIGS in the context of a hierarchy, a

Markov chain and a DAG structure to do posterior inference for STM, SeqLDA

and AdaTM respectively.

8.1 Future Work

Possible future work is how to extend the three structured topic models presented

in this thesis to consider more complex document structures. For example, a sci-

entific article consists of sections, each of which contains paragraphs, and each

paragraph is composed of sentences. This gives us an article-section-paragraph

structure. One promising research is to extend STM to a multi-level hierarchy,

since the PDPs can be easily extended to full trees, and the proposed Gibbs sam-

pling algorithms still apply. In addition, it would be interesting to learn document

structure automatically without taking the segment layout as a guide to struc-

ture, which is closely related to structured learning [Lee et al., 2007; Yehezkel

and Lerner, 2009]. To find a good Bayesian network structure that matches the

document subject structure, we could do heuristic search or MCMC sampling
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over the space of network structures.

Text analysis is one of the important application areas of those models, e.g.,

document summarisation and segmentation. The former aims at finding a short

set of words or paragraphs that can adequately represent the main subject of a

text document or a collection of documents. The latter is the task of dividing a

given text data into semantically coherent parts. Topic models have been applied

to both summarisation [Arora and Ravindran, 2008a,b] and segmentation [Blei

and Moreno, 2001; Purver et al., 2006; Misra et al., 2009; Nguyen et al., 2012]. It

would be worth exploring how document structure can assist in both kinds of

analysis by taking advantage of the three models presented in this thesis.

The inference methods I proposed in this thesis are Gibbs sampling based

on the Chinese restaurant process (CRP) presentation for the PDP, since the

CRP provides an elegant analogy of incremental sampling for the posterior of the

PDP. They are good enough to test the three proposed topic models. However, it is

still worth studying other algorithms for DP/PDP mixture models, such as Gibbs

sampling for the stick-breaking construction [Ishwaran and James, 2001], and

variational inference [Blei and Jordan, 2005; Teh et al., 2008], and indeed variants

of the existing algorithms could also prove superior. In particular, to analyse

unseen documents for the purpose of, for example, topic segmentation, instead of

using Gibbs sampling, one could also consider leveraging the forward-backward

algorithm [Yu and Kobayashi, 2006] to find the most likely state for each segment,

especially for SeqLDA that has a simple Markov chain. Thus, developing forward-

backward algorithms for the proposed models can be an interesting research topic.

Moreover, to further investigate capabilities of three topic models presented

in Chapters 5 to 7, it would be important to compare them, especially AdaTM in

Chapter 7, with other dynamic models, such as Dynamic Topic Models (DTM)

[Blei and Lafferty, 2006b], dynamic HDPs [Ren et al., 2008], graphical Pitman-

Yor process [Wood and Teh, 2009] and Evolutionary HDPs [Zhang et al., 2010]

with more extensive experiments.
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